M. Savio, D. Vettori, H. Biggs, A. Zampiron, S. Cameron, M. Stewart, C. Soulsby, V. Nikora
{"title":"排列和交错配置人工植被斑块的水力阻力","authors":"M. Savio, D. Vettori, H. Biggs, A. Zampiron, S. Cameron, M. Stewart, C. Soulsby, V. Nikora","doi":"10.1080/00221686.2023.2180445","DOIUrl":null,"url":null,"abstract":"ABSTRACT The paper reports the results of laboratory experiments to investigate the effect of vegetation patch mosaics on hydraulic resistance. Experiments were run for seven levels of vegetation coverage with square patches of flexible plastic grass in aligned and staggered configurations and a wide range of hydraulic conditions. Hydraulic resistance was substantially higher for staggered than aligned configurations, particularly for intermediate ranges of vegetation coverage. The results indicate that hydraulic resistance differs between regimes of isolated roughness flow, wake interference flow, and skimming flow. Two types of models are proposed to predict hydraulic resistance (i.e. Manning’s coefficient n) for aligned and staggered configurations, one as a function of the nondimensional spatially-averaged hydraulic radius and another as a function of relative submergence and surface area blockage factor. To account for the effects of vegetation patch alignment, an additional factor α is introduced. This work provides comprehensive datasets and models that can be used to improve the prediction of hydraulic resistance in open-channel flows with vegetation patches.","PeriodicalId":54802,"journal":{"name":"Journal of Hydraulic Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydraulic resistance of artificial vegetation patches in aligned and staggered configurations\",\"authors\":\"M. Savio, D. Vettori, H. Biggs, A. Zampiron, S. Cameron, M. Stewart, C. Soulsby, V. Nikora\",\"doi\":\"10.1080/00221686.2023.2180445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The paper reports the results of laboratory experiments to investigate the effect of vegetation patch mosaics on hydraulic resistance. Experiments were run for seven levels of vegetation coverage with square patches of flexible plastic grass in aligned and staggered configurations and a wide range of hydraulic conditions. Hydraulic resistance was substantially higher for staggered than aligned configurations, particularly for intermediate ranges of vegetation coverage. The results indicate that hydraulic resistance differs between regimes of isolated roughness flow, wake interference flow, and skimming flow. Two types of models are proposed to predict hydraulic resistance (i.e. Manning’s coefficient n) for aligned and staggered configurations, one as a function of the nondimensional spatially-averaged hydraulic radius and another as a function of relative submergence and surface area blockage factor. To account for the effects of vegetation patch alignment, an additional factor α is introduced. This work provides comprehensive datasets and models that can be used to improve the prediction of hydraulic resistance in open-channel flows with vegetation patches.\",\"PeriodicalId\":54802,\"journal\":{\"name\":\"Journal of Hydraulic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydraulic Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00221686.2023.2180445\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydraulic Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00221686.2023.2180445","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Hydraulic resistance of artificial vegetation patches in aligned and staggered configurations
ABSTRACT The paper reports the results of laboratory experiments to investigate the effect of vegetation patch mosaics on hydraulic resistance. Experiments were run for seven levels of vegetation coverage with square patches of flexible plastic grass in aligned and staggered configurations and a wide range of hydraulic conditions. Hydraulic resistance was substantially higher for staggered than aligned configurations, particularly for intermediate ranges of vegetation coverage. The results indicate that hydraulic resistance differs between regimes of isolated roughness flow, wake interference flow, and skimming flow. Two types of models are proposed to predict hydraulic resistance (i.e. Manning’s coefficient n) for aligned and staggered configurations, one as a function of the nondimensional spatially-averaged hydraulic radius and another as a function of relative submergence and surface area blockage factor. To account for the effects of vegetation patch alignment, an additional factor α is introduced. This work provides comprehensive datasets and models that can be used to improve the prediction of hydraulic resistance in open-channel flows with vegetation patches.
期刊介绍:
The Journal of Hydraulic Research (JHR) is the flagship journal of the International Association for Hydro-Environment Engineering and Research (IAHR). It publishes research papers in theoretical, experimental and computational hydraulics and fluid mechanics, particularly relating to rivers, lakes, estuaries, coasts, constructed waterways, and some internal flows such as pipe flows. To reflect current tendencies in water research, outcomes of interdisciplinary hydro-environment studies with a strong fluid mechanical component are especially invited. Although the preference is given to the fundamental issues, the papers focusing on important unconventional or emerging applications of broad interest are also welcome.