天然橡胶潜在的可持续抗氧化剂:指甲花及其主要成分

IF 1.2 4区 工程技术 Q4 POLYMER SCIENCE Rubber Chemistry and Technology Pub Date : 2021-06-09 DOI:10.5254/rct.21.79907
Şehriban Öncel, A. A. Wis, B. Karaağaç
{"title":"天然橡胶潜在的可持续抗氧化剂:指甲花及其主要成分","authors":"Şehriban Öncel, A. A. Wis, B. Karaağaç","doi":"10.5254/rct.21.79907","DOIUrl":null,"url":null,"abstract":"\n Unsaturated chain structure of natural rubber makes it a poor defense against thermo-oxidative aging. Synthetic antioxidants are commonly used in rubber compound recipes to prevent/retard aging of the rubber material during its service life. However, synthetic antioxidants cause some negative effects on human and environmental health; they tend to be replaced by natural alternatives. In this study, the short- and long-term antioxidant effects of henna and its basic active components, lawsone and gallic acid, have been investigated individually for natural rubber cured with semi-efficient sulfur vulcanization system. The composition of henna was determined by gas chromatography-mass spectrometry (GC-MS) analysis. Qualitative and quantitative analysis were performed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to highlight structural changes on aged vulcanizates. The authors attempted to correlate the suggested aging mechanism with rheological, mechanical, and morphological properties. Results showed that both lawsone and gallic acid were impressively successful regarding their anti-oxidation activity. In addition, henna, which contains a sufficient amount of lawsone and gallic acid, has been suggested as a competitive natural alternative to the common synthetic stabilization system for natural rubber, considering its sustainable commercial abundancy.","PeriodicalId":21349,"journal":{"name":"Rubber Chemistry and Technology","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POTENTIAL SUSTAINABLE ANTIOXIDANTS FOR NATURAL RUBBER: HENNA AND ITS MAJOR COMPONENTS\",\"authors\":\"Şehriban Öncel, A. A. Wis, B. Karaağaç\",\"doi\":\"10.5254/rct.21.79907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Unsaturated chain structure of natural rubber makes it a poor defense against thermo-oxidative aging. Synthetic antioxidants are commonly used in rubber compound recipes to prevent/retard aging of the rubber material during its service life. However, synthetic antioxidants cause some negative effects on human and environmental health; they tend to be replaced by natural alternatives. In this study, the short- and long-term antioxidant effects of henna and its basic active components, lawsone and gallic acid, have been investigated individually for natural rubber cured with semi-efficient sulfur vulcanization system. The composition of henna was determined by gas chromatography-mass spectrometry (GC-MS) analysis. Qualitative and quantitative analysis were performed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to highlight structural changes on aged vulcanizates. The authors attempted to correlate the suggested aging mechanism with rheological, mechanical, and morphological properties. Results showed that both lawsone and gallic acid were impressively successful regarding their anti-oxidation activity. In addition, henna, which contains a sufficient amount of lawsone and gallic acid, has been suggested as a competitive natural alternative to the common synthetic stabilization system for natural rubber, considering its sustainable commercial abundancy.\",\"PeriodicalId\":21349,\"journal\":{\"name\":\"Rubber Chemistry and Technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rubber Chemistry and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5254/rct.21.79907\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rubber Chemistry and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5254/rct.21.79907","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

天然橡胶的不饱和链结构使其抗热氧化老化能力较差。合成抗氧剂是橡胶复合配方中常用的抗氧剂,用于防止/延缓橡胶材料在使用寿命期间的老化。然而,合成抗氧化剂对人体健康和环境健康造成一定的负面影响;它们往往会被天然替代品所取代。本研究分别研究了指甲花及其基本活性成分lawsone和没食子酸对半高效硫硫化体系固化的天然橡胶的短期和长期抗氧化作用。采用气相色谱-质谱联用(GC-MS)法测定指甲花的成分。利用傅里叶变换红外光谱(FTIR)和x射线光电子能谱(XPS)进行定性和定量分析,以揭示老化硫化胶的结构变化。作者试图将提出的老化机制与流变学、力学和形态特性联系起来。结果表明,lawsonone和没食子酸均具有良好的抗氧化活性。此外,指甲花含有足够量的lawsone和没食子酸,考虑到其可持续的商业丰度,已被认为是天然橡胶常用合成稳定体系的竞争性天然替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
POTENTIAL SUSTAINABLE ANTIOXIDANTS FOR NATURAL RUBBER: HENNA AND ITS MAJOR COMPONENTS
Unsaturated chain structure of natural rubber makes it a poor defense against thermo-oxidative aging. Synthetic antioxidants are commonly used in rubber compound recipes to prevent/retard aging of the rubber material during its service life. However, synthetic antioxidants cause some negative effects on human and environmental health; they tend to be replaced by natural alternatives. In this study, the short- and long-term antioxidant effects of henna and its basic active components, lawsone and gallic acid, have been investigated individually for natural rubber cured with semi-efficient sulfur vulcanization system. The composition of henna was determined by gas chromatography-mass spectrometry (GC-MS) analysis. Qualitative and quantitative analysis were performed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) to highlight structural changes on aged vulcanizates. The authors attempted to correlate the suggested aging mechanism with rheological, mechanical, and morphological properties. Results showed that both lawsone and gallic acid were impressively successful regarding their anti-oxidation activity. In addition, henna, which contains a sufficient amount of lawsone and gallic acid, has been suggested as a competitive natural alternative to the common synthetic stabilization system for natural rubber, considering its sustainable commercial abundancy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rubber Chemistry and Technology
Rubber Chemistry and Technology 工程技术-高分子科学
CiteScore
3.50
自引率
20.00%
发文量
21
审稿时长
3.6 months
期刊介绍: The scope of RC&T covers: -Chemistry and Properties- Mechanics- Materials Science- Nanocomposites- Biotechnology- Rubber Recycling- Green Technology- Characterization and Simulation. Published continuously since 1928, the journal provides the deepest archive of published research in the field. Rubber Chemistry & Technology is read by scientists and engineers in academia, industry and government.
期刊最新文献
EXPANDING HORIZONS: DIVERSE APPLICATIONS OF RUBBERS AND ELASTOMERS IN EMERGING TECHNOLOGIES EFFECT OF DEEP EUTECTIC SOLVENT PRETREATMENT ON DEVULCANIZATION OF WASTE RUBBER POWDER A NOVEL SBS COMPOUND VIA BLENDING WITH PS-B-PMBL DIBLOCK COPOLYMER FOR ENHANCED MECHANICAL PROPERTIES INFLUENCE OF POLAR MODIFIERS ON THE ANIONIC SOLUTION 1,3-BUTADIENE POLYMERIZATIONS INFLUENCE OF THE MIXTURE VISCOSITY ON MECHANICAL ANISOTROPY AND PROCESSABILITY OF AN NBR-BASED RUBBER MIXTURE FOR ADDITIVE MANUFACTURING
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1