作为广播网的全球神经元工作空间

IF 3.6 3区 医学 Q2 NEUROSCIENCES Network Neuroscience Pub Date : 2022-10-01 eCollection Date: 2022-01-01 DOI:10.1162/netn_a_00261
Abel Wajnerman Paz
{"title":"作为广播网的全球神经元工作空间","authors":"Abel Wajnerman Paz","doi":"10.1162/netn_a_00261","DOIUrl":null,"url":null,"abstract":"<p><p>A new strategy for moving forward in the characterization of the global neuronal workspace (GNW) is proposed. According to Dehaene, Changeux, and colleagues (Dehaene, 2014, pp. 304, 312; Dehaene & Changeux, 2004, 2005), broadcasting is the main function of the GNW. However, the dynamic network properties described by recent graph theoretic GNW models are consistent with many large-scale communication processes that are different from broadcasting. We propose to apply a different graph theoretic approach, originally developed for optimizing information dissemination in communication networks, which can be used to identify the pattern of frequency and phase-specific directed functional connections that the GNW would exhibit only if it were a broadcasting network.</p>","PeriodicalId":48520,"journal":{"name":"Network Neuroscience","volume":"6 1","pages":"1186-1204"},"PeriodicalIF":3.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117084/pdf/","citationCount":"0","resultStr":"{\"title\":\"The global neuronal workspace as a broadcasting network.\",\"authors\":\"Abel Wajnerman Paz\",\"doi\":\"10.1162/netn_a_00261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new strategy for moving forward in the characterization of the global neuronal workspace (GNW) is proposed. According to Dehaene, Changeux, and colleagues (Dehaene, 2014, pp. 304, 312; Dehaene & Changeux, 2004, 2005), broadcasting is the main function of the GNW. However, the dynamic network properties described by recent graph theoretic GNW models are consistent with many large-scale communication processes that are different from broadcasting. We propose to apply a different graph theoretic approach, originally developed for optimizing information dissemination in communication networks, which can be used to identify the pattern of frequency and phase-specific directed functional connections that the GNW would exhibit only if it were a broadcasting network.</p>\",\"PeriodicalId\":48520,\"journal\":{\"name\":\"Network Neuroscience\",\"volume\":\"6 1\",\"pages\":\"1186-1204\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11117084/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1162/netn_a_00261\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1162/netn_a_00261","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种新的神经元工作空间(GNW)表征策略。根据Dehaene, Changeux和同事(Dehaene, 2014, pp. 304, 312;Dehaene & Changeux, 2004,2005),广播是GNW的主要功能。然而,最近的图论GNW模型所描述的动态网络特性与许多不同于广播的大规模通信过程是一致的。我们建议应用一种不同的图论方法,该方法最初是为优化通信网络中的信息传播而开发的,可用于识别GNW只有在广播网络时才会表现出的频率和相位特定的定向功能连接模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The global neuronal workspace as a broadcasting network.

A new strategy for moving forward in the characterization of the global neuronal workspace (GNW) is proposed. According to Dehaene, Changeux, and colleagues (Dehaene, 2014, pp. 304, 312; Dehaene & Changeux, 2004, 2005), broadcasting is the main function of the GNW. However, the dynamic network properties described by recent graph theoretic GNW models are consistent with many large-scale communication processes that are different from broadcasting. We propose to apply a different graph theoretic approach, originally developed for optimizing information dissemination in communication networks, which can be used to identify the pattern of frequency and phase-specific directed functional connections that the GNW would exhibit only if it were a broadcasting network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Network Neuroscience
Network Neuroscience NEUROSCIENCES-
CiteScore
6.40
自引率
6.40%
发文量
68
审稿时长
16 weeks
期刊最新文献
A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Brain sodium MRI-derived priors support the estimation of epileptogenic zones using personalized model-based methods in epilepsy. Developmental differences in canonical cortical networks: Insights from microstructure-informed tractography. Frequency modulation increases the specificity of time-resolved connectivity: A resting-state fMRI study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1