Rishith Kumar Vogeti, K. Raju, D. Nagesh Kumar, Advani Manish Rajesh, S. V. Somanath Kumar, Yashraj Santosh Kumar Jha
{"title":"水文模型在印度河流流域气候变化框架中的应用","authors":"Rishith Kumar Vogeti, K. Raju, D. Nagesh Kumar, Advani Manish Rajesh, S. V. Somanath Kumar, Yashraj Santosh Kumar Jha","doi":"10.2166/wcc.2023.188","DOIUrl":null,"url":null,"abstract":"\n \n Soil Water Assessment Tool (SWAT), Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS), and Hydrologic Simulation Program Fortran (HSPF) are explored for streamflow simulation of Lower Godavari Basin, India. The simulating ability of models is evaluated using four indicators. SWAT has shown exceptional simulating ability in calibration and validation compared to the other two. Accordingly, SWAT is used in the climate change framework using an ensemble of 13 Global Climate Models and 4 Shared Socioeconomic Pathways (SSPs). Three-time segments, near-future (2021–2046), mid-future (2047–2072), and far-future (2073–2099), are considered for analysis. Four SSPs show a substantial increase in streamflow compared to the historical period (1982–2020). These deviations range from 17.14 (in SSP245) to 28.35% (in SSP126) (near-future), 31.32 (SSP370) to 43.28% (SSP585) (mid-future), and 30.41 (SSP126) to 70.8% (SSP585) (far-future). Across all timescales covering 948 months, the highest projected streamflow observed in SSP126, SSP245, SSP370, and SSP585 were 4962.36, 6,108, 6,821, and 6,845 m3/s, respectively. Efforts are also made to appraise the influence of multi-model combinations on streamflow. The present study is expected to provide a platform for holistic decision-making, which helps develop efficient basin planning and management alternatives.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of hydrological models in climate change framework for a river basin in India\",\"authors\":\"Rishith Kumar Vogeti, K. Raju, D. Nagesh Kumar, Advani Manish Rajesh, S. V. Somanath Kumar, Yashraj Santosh Kumar Jha\",\"doi\":\"10.2166/wcc.2023.188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Soil Water Assessment Tool (SWAT), Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS), and Hydrologic Simulation Program Fortran (HSPF) are explored for streamflow simulation of Lower Godavari Basin, India. The simulating ability of models is evaluated using four indicators. SWAT has shown exceptional simulating ability in calibration and validation compared to the other two. Accordingly, SWAT is used in the climate change framework using an ensemble of 13 Global Climate Models and 4 Shared Socioeconomic Pathways (SSPs). Three-time segments, near-future (2021–2046), mid-future (2047–2072), and far-future (2073–2099), are considered for analysis. Four SSPs show a substantial increase in streamflow compared to the historical period (1982–2020). These deviations range from 17.14 (in SSP245) to 28.35% (in SSP126) (near-future), 31.32 (SSP370) to 43.28% (SSP585) (mid-future), and 30.41 (SSP126) to 70.8% (SSP585) (far-future). Across all timescales covering 948 months, the highest projected streamflow observed in SSP126, SSP245, SSP370, and SSP585 were 4962.36, 6,108, 6,821, and 6,845 m3/s, respectively. Efforts are also made to appraise the influence of multi-model combinations on streamflow. The present study is expected to provide a platform for holistic decision-making, which helps develop efficient basin planning and management alternatives.\",\"PeriodicalId\":49150,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2023.188\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2023.188","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Application of hydrological models in climate change framework for a river basin in India
Soil Water Assessment Tool (SWAT), Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS), and Hydrologic Simulation Program Fortran (HSPF) are explored for streamflow simulation of Lower Godavari Basin, India. The simulating ability of models is evaluated using four indicators. SWAT has shown exceptional simulating ability in calibration and validation compared to the other two. Accordingly, SWAT is used in the climate change framework using an ensemble of 13 Global Climate Models and 4 Shared Socioeconomic Pathways (SSPs). Three-time segments, near-future (2021–2046), mid-future (2047–2072), and far-future (2073–2099), are considered for analysis. Four SSPs show a substantial increase in streamflow compared to the historical period (1982–2020). These deviations range from 17.14 (in SSP245) to 28.35% (in SSP126) (near-future), 31.32 (SSP370) to 43.28% (SSP585) (mid-future), and 30.41 (SSP126) to 70.8% (SSP585) (far-future). Across all timescales covering 948 months, the highest projected streamflow observed in SSP126, SSP245, SSP370, and SSP585 were 4962.36, 6,108, 6,821, and 6,845 m3/s, respectively. Efforts are also made to appraise the influence of multi-model combinations on streamflow. The present study is expected to provide a platform for holistic decision-making, which helps develop efficient basin planning and management alternatives.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.