{"title":"课堂活动中的学生互动:一个数学模型","authors":"D. Brunetto, C. Andrà, N. Parolini, M. Verani","doi":"10.2478/caim-2018-0011","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims at bridging Mathematical Modelling and Mathematics Education by studying the opinion dynamics of students who work in small groups during mathematics classrooms. In particular, we propose a model which hinges upon the pioneering work of Hegselmann and Krause on opinion dynamics and integrates recent results of interactionist research in Mathematical Education. More precisely, the proposed model incorporates the following features: 1) the feelings of each student towards the classmates (building upon the so-called \\I can\" -\\you can\" framework); 2) the different levels of preparation of the students; 3) the presence of the teacher, who may or may not intervene to drive the students towards the correct solution of the problem. Several numerical experiments are presented to assess the capability of the model in reproducing typical realistic scenarios.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"9 1","pages":"105 - 91"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Student interactions during class activities: a mathematical model\",\"authors\":\"D. Brunetto, C. Andrà, N. Parolini, M. Verani\",\"doi\":\"10.2478/caim-2018-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims at bridging Mathematical Modelling and Mathematics Education by studying the opinion dynamics of students who work in small groups during mathematics classrooms. In particular, we propose a model which hinges upon the pioneering work of Hegselmann and Krause on opinion dynamics and integrates recent results of interactionist research in Mathematical Education. More precisely, the proposed model incorporates the following features: 1) the feelings of each student towards the classmates (building upon the so-called \\\\I can\\\" -\\\\you can\\\" framework); 2) the different levels of preparation of the students; 3) the presence of the teacher, who may or may not intervene to drive the students towards the correct solution of the problem. Several numerical experiments are presented to assess the capability of the model in reproducing typical realistic scenarios.\",\"PeriodicalId\":37903,\"journal\":{\"name\":\"Communications in Applied and Industrial Mathematics\",\"volume\":\"9 1\",\"pages\":\"105 - 91\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Applied and Industrial Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/caim-2018-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2018-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
Student interactions during class activities: a mathematical model
Abstract This paper aims at bridging Mathematical Modelling and Mathematics Education by studying the opinion dynamics of students who work in small groups during mathematics classrooms. In particular, we propose a model which hinges upon the pioneering work of Hegselmann and Krause on opinion dynamics and integrates recent results of interactionist research in Mathematical Education. More precisely, the proposed model incorporates the following features: 1) the feelings of each student towards the classmates (building upon the so-called \I can" -\you can" framework); 2) the different levels of preparation of the students; 3) the presence of the teacher, who may or may not intervene to drive the students towards the correct solution of the problem. Several numerical experiments are presented to assess the capability of the model in reproducing typical realistic scenarios.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.