利用深度学习从高分辨率遥感图像中进行建筑物边缘检测

D. Prabhakar, P. K. Garg
{"title":"利用深度学习从高分辨率遥感图像中进行建筑物边缘检测","authors":"D. Prabhakar, P. K. Garg","doi":"10.5194/isprs-archives-xlviii-m-3-2023-189-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Detection of Building edges is crucial for building information extraction and description. Extracting structures from large-scale aerial images has been utilized for years in cartography. With commercially available high-resolution satellites, many aerial photography usages can now employ satellite imagery. Edge detection is focused on pinpointing distinct transitions between greyscale image regions and attributing their origins to underlying physical processes. Detecting building boundaries from very high-resolution (VHR) remote sensing data is essential for many geo-related applications, such as urban planning and management, surveying and mapping, 3D reconstruction, motion recognition, image registration, image enhancement and restoration, image compression, and more. The rapid evolution of convolutional neural networks (CNNs) has led to substantial breakthroughs in edge detection in recent years. Sharp, localized changes in brightness characterize edges in digital images. In most cases, edge detection requires some kind of image smoothing and separation. Differentiation is an ill-conditioned problem, and smoothing leads to information loss. It is challenging to create an edge detection method that works everywhere and adapts to any future processing stages. Therefore, throughout the development of digital image processing, numerous edge detectors have been created, each with its own unique set of mathematical and algorithmic properties. Several edge detectors have been developed due to application needs and the subjective nature of edge definition and characterization. We propose a deep learning technique, particularly convolutional neural networks(CNNs), that offers a promising approach to automatically learn and extract features from very high-resolution remote sensing imagery, leading to more accurate and efficient building edge detection.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BUILDING EDGE DETECTION FROM VERY HIGH-RESOLUTION REMOTE SENSING IMAGERY USING DEEP LEARNING\",\"authors\":\"D. Prabhakar, P. K. Garg\",\"doi\":\"10.5194/isprs-archives-xlviii-m-3-2023-189-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Detection of Building edges is crucial for building information extraction and description. Extracting structures from large-scale aerial images has been utilized for years in cartography. With commercially available high-resolution satellites, many aerial photography usages can now employ satellite imagery. Edge detection is focused on pinpointing distinct transitions between greyscale image regions and attributing their origins to underlying physical processes. Detecting building boundaries from very high-resolution (VHR) remote sensing data is essential for many geo-related applications, such as urban planning and management, surveying and mapping, 3D reconstruction, motion recognition, image registration, image enhancement and restoration, image compression, and more. The rapid evolution of convolutional neural networks (CNNs) has led to substantial breakthroughs in edge detection in recent years. Sharp, localized changes in brightness characterize edges in digital images. In most cases, edge detection requires some kind of image smoothing and separation. Differentiation is an ill-conditioned problem, and smoothing leads to information loss. It is challenging to create an edge detection method that works everywhere and adapts to any future processing stages. Therefore, throughout the development of digital image processing, numerous edge detectors have been created, each with its own unique set of mathematical and algorithmic properties. Several edge detectors have been developed due to application needs and the subjective nature of edge definition and characterization. We propose a deep learning technique, particularly convolutional neural networks(CNNs), that offers a promising approach to automatically learn and extract features from very high-resolution remote sensing imagery, leading to more accurate and efficient building edge detection.\\n\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-189-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-189-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要建筑物边缘检测对于建筑物信息的提取和描述至关重要。从大规模航空图像中提取结构在制图中已经使用了多年。有了商业上可用的高分辨率卫星,许多航空摄影用途现在都可以使用卫星图像。边缘检测的重点是精确定位灰度图像区域之间的不同过渡,并将其起源归因于潜在的物理过程。从超高分辨率(VHR)遥感数据中检测建筑边界对于许多地质相关应用至关重要,如城市规划和管理、测绘、三维重建、运动识别、图像配准、图像增强和恢复、图像压缩等。近年来,卷积神经网络的快速发展在边缘检测方面取得了重大突破。亮度的急剧局部变化是数字图像边缘的特征。在大多数情况下,边缘检测需要某种图像平滑和分离。微分是一个病态的问题,平滑会导致信息丢失。创建一种在任何地方都能工作并适应未来任何处理阶段的边缘检测方法是具有挑战性的。因此,在数字图像处理的整个发展过程中,已经创建了许多边缘检测器,每个边缘检测器都具有自己独特的数学和算法特性。由于应用需求以及边缘定义和表征的主观性质,已经开发了几种边缘检测器。我们提出了一种深度学习技术,特别是卷积神经网络(CNNs),它提供了一种很有前途的方法来自动学习和提取高分辨率遥感图像的特征,从而实现更准确、更高效的建筑物边缘检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BUILDING EDGE DETECTION FROM VERY HIGH-RESOLUTION REMOTE SENSING IMAGERY USING DEEP LEARNING
Abstract. Detection of Building edges is crucial for building information extraction and description. Extracting structures from large-scale aerial images has been utilized for years in cartography. With commercially available high-resolution satellites, many aerial photography usages can now employ satellite imagery. Edge detection is focused on pinpointing distinct transitions between greyscale image regions and attributing their origins to underlying physical processes. Detecting building boundaries from very high-resolution (VHR) remote sensing data is essential for many geo-related applications, such as urban planning and management, surveying and mapping, 3D reconstruction, motion recognition, image registration, image enhancement and restoration, image compression, and more. The rapid evolution of convolutional neural networks (CNNs) has led to substantial breakthroughs in edge detection in recent years. Sharp, localized changes in brightness characterize edges in digital images. In most cases, edge detection requires some kind of image smoothing and separation. Differentiation is an ill-conditioned problem, and smoothing leads to information loss. It is challenging to create an edge detection method that works everywhere and adapts to any future processing stages. Therefore, throughout the development of digital image processing, numerous edge detectors have been created, each with its own unique set of mathematical and algorithmic properties. Several edge detectors have been developed due to application needs and the subjective nature of edge definition and characterization. We propose a deep learning technique, particularly convolutional neural networks(CNNs), that offers a promising approach to automatically learn and extract features from very high-resolution remote sensing imagery, leading to more accurate and efficient building edge detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1