I. Abu-Mahfouz, Regina Iakusheva, T. Finkbeiner, J. Cartwright, V. Vahrenkamp
{"title":"未成熟富有机质烃源岩的岩石力学性质及其与岩石成分和岩相的关系","authors":"I. Abu-Mahfouz, Regina Iakusheva, T. Finkbeiner, J. Cartwright, V. Vahrenkamp","doi":"10.1144/petgeo2022-021","DOIUrl":null,"url":null,"abstract":"Mechanical properties of layered rocks are critical in ensuring wellbore integrity and predicting natural fracture occurrence for successful reservoir development, particularly in unconventional reservoirs for which fractures provide the main pathway for hydrocarbon flow. We examine rock mechanical properties of exceptionally organic-rich, immature source rocks from Jordan and understand their relationships with rock mineral composition and lithofacies variations. Four depositional microfacies were identified: organic-rich mudstone, organic-rich wackestone, silica-rich packstone, and fine-grained organic-rich wackestone. The four types exhibit various mineralogical compositions, dominated by carbonates, biogenic quartz, and apatite. Leeb hardness ranges between 288 – 654, with the highest average values in silica-rich packstone and organic-rich mudstone. The highest uniaxial compressive strength (derived from the intrinsic specific energy measured by Epslog's Wombat scratch device), compressional, and shear waves velocities were measured in organic-rich mudstones (140 MPa, 3368 m/s, and 1702 m/s, respectively). Porosity shows higher average values in organic-rich wackestones and fine-grained organic-rich wackestones (33% – 35%). Silica-rich packstone and organic-rich mudstone have brittle properties, while organic-rich wackestone and fine-grained organic-rich wackestone are ductile. High silica contents are correlated positively with brittleness. A strong hardness-brittleness correlation suggests that Leeb hardness is a useful proxy for brittleness. Our study allows a better understanding of the relationships between lithofacies, organic content and rock mechanical properties, with implications for fracking design to well completion and hydrocarbon production. Further work involving systematic sampling and a more rigorous study is still required to better understand the spatial distribution of target lithologies and their mechanical properties.","PeriodicalId":49704,"journal":{"name":"Petroleum Geoscience","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rock mechanical properties of immature, organic-rich source rocks and their relationships to rock composition and lithofacies\",\"authors\":\"I. Abu-Mahfouz, Regina Iakusheva, T. Finkbeiner, J. Cartwright, V. Vahrenkamp\",\"doi\":\"10.1144/petgeo2022-021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mechanical properties of layered rocks are critical in ensuring wellbore integrity and predicting natural fracture occurrence for successful reservoir development, particularly in unconventional reservoirs for which fractures provide the main pathway for hydrocarbon flow. We examine rock mechanical properties of exceptionally organic-rich, immature source rocks from Jordan and understand their relationships with rock mineral composition and lithofacies variations. Four depositional microfacies were identified: organic-rich mudstone, organic-rich wackestone, silica-rich packstone, and fine-grained organic-rich wackestone. The four types exhibit various mineralogical compositions, dominated by carbonates, biogenic quartz, and apatite. Leeb hardness ranges between 288 – 654, with the highest average values in silica-rich packstone and organic-rich mudstone. The highest uniaxial compressive strength (derived from the intrinsic specific energy measured by Epslog's Wombat scratch device), compressional, and shear waves velocities were measured in organic-rich mudstones (140 MPa, 3368 m/s, and 1702 m/s, respectively). Porosity shows higher average values in organic-rich wackestones and fine-grained organic-rich wackestones (33% – 35%). Silica-rich packstone and organic-rich mudstone have brittle properties, while organic-rich wackestone and fine-grained organic-rich wackestone are ductile. High silica contents are correlated positively with brittleness. A strong hardness-brittleness correlation suggests that Leeb hardness is a useful proxy for brittleness. Our study allows a better understanding of the relationships between lithofacies, organic content and rock mechanical properties, with implications for fracking design to well completion and hydrocarbon production. Further work involving systematic sampling and a more rigorous study is still required to better understand the spatial distribution of target lithologies and their mechanical properties.\",\"PeriodicalId\":49704,\"journal\":{\"name\":\"Petroleum Geoscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geoscience\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1144/petgeo2022-021\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/petgeo2022-021","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Rock mechanical properties of immature, organic-rich source rocks and their relationships to rock composition and lithofacies
Mechanical properties of layered rocks are critical in ensuring wellbore integrity and predicting natural fracture occurrence for successful reservoir development, particularly in unconventional reservoirs for which fractures provide the main pathway for hydrocarbon flow. We examine rock mechanical properties of exceptionally organic-rich, immature source rocks from Jordan and understand their relationships with rock mineral composition and lithofacies variations. Four depositional microfacies were identified: organic-rich mudstone, organic-rich wackestone, silica-rich packstone, and fine-grained organic-rich wackestone. The four types exhibit various mineralogical compositions, dominated by carbonates, biogenic quartz, and apatite. Leeb hardness ranges between 288 – 654, with the highest average values in silica-rich packstone and organic-rich mudstone. The highest uniaxial compressive strength (derived from the intrinsic specific energy measured by Epslog's Wombat scratch device), compressional, and shear waves velocities were measured in organic-rich mudstones (140 MPa, 3368 m/s, and 1702 m/s, respectively). Porosity shows higher average values in organic-rich wackestones and fine-grained organic-rich wackestones (33% – 35%). Silica-rich packstone and organic-rich mudstone have brittle properties, while organic-rich wackestone and fine-grained organic-rich wackestone are ductile. High silica contents are correlated positively with brittleness. A strong hardness-brittleness correlation suggests that Leeb hardness is a useful proxy for brittleness. Our study allows a better understanding of the relationships between lithofacies, organic content and rock mechanical properties, with implications for fracking design to well completion and hydrocarbon production. Further work involving systematic sampling and a more rigorous study is still required to better understand the spatial distribution of target lithologies and their mechanical properties.
期刊介绍:
Petroleum Geoscience is the international journal of geoenergy and applied earth science, and is co-owned by the Geological Society of London and the European Association of Geoscientists and Engineers (EAGE).
Petroleum Geoscience transcends disciplinary boundaries and publishes a balanced mix of articles covering exploration, exploitation, appraisal, development and enhancement of sub-surface hydrocarbon resources and carbon repositories. The integration of disciplines in an applied context, whether for fluid production, carbon storage or related geoenergy applications, is a particular strength of the journal. Articles on enhancing exploration efficiency, lowering technological and environmental risk, and improving hydrocarbon recovery communicate the latest developments in sub-surface geoscience to a wide readership.
Petroleum Geoscience provides a multidisciplinary forum for those engaged in the science and technology of the rock-related sub-surface disciplines. The journal reaches some 8000 individual subscribers, and a further 1100 institutional subscriptions provide global access to readers including geologists, geophysicists, petroleum and reservoir engineers, petrophysicists and geochemists in both academia and industry. The journal aims to share knowledge of reservoir geoscience and to reflect the international nature of its development.