{"title":"电子束辐照对氧化石墨烯的影响","authors":"P. Adamson, S. Williams","doi":"10.1063/1.5129242","DOIUrl":null,"url":null,"abstract":"Graphene oxide (GO) is a nanofilm composed of graphene with various oxygen functional groups attached. GO is of interest due to its unique mechanical-enhancement properties, its tunable electronic properties, and its potential use in the wide-scale production of graphene. Scanning electron microscopes (SEMs) are frequently used to characterize and study GO films. The purpose of this project was to study the effects of SEM-imaging on GO films. Using an SEM, we irradiated GO samples at electron beam-energies of 10, 20, and 30 keV (at a constant emission current of ~40 micro-amps) for times ranging from 15 minutes to one hour. Raman D- and G-band intensities were used to examine structural modifications/damage to GO samples as a function of beam energy and exposure time. The results suggest that imaging with a 30 keV electron beam for 30 minutes may lead to the formation of amorphous carbon, while imaging with 10 keV or 20 keV beams for 30 minutes does not have a significant effect on GO samples.","PeriodicalId":93662,"journal":{"name":"Journal of undergraduate reports in physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/1.5129242","citationCount":"1","resultStr":"{\"title\":\"Effects of Electron-Beam Irradiation on Graphene Oxide\",\"authors\":\"P. Adamson, S. Williams\",\"doi\":\"10.1063/1.5129242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene oxide (GO) is a nanofilm composed of graphene with various oxygen functional groups attached. GO is of interest due to its unique mechanical-enhancement properties, its tunable electronic properties, and its potential use in the wide-scale production of graphene. Scanning electron microscopes (SEMs) are frequently used to characterize and study GO films. The purpose of this project was to study the effects of SEM-imaging on GO films. Using an SEM, we irradiated GO samples at electron beam-energies of 10, 20, and 30 keV (at a constant emission current of ~40 micro-amps) for times ranging from 15 minutes to one hour. Raman D- and G-band intensities were used to examine structural modifications/damage to GO samples as a function of beam energy and exposure time. The results suggest that imaging with a 30 keV electron beam for 30 minutes may lead to the formation of amorphous carbon, while imaging with 10 keV or 20 keV beams for 30 minutes does not have a significant effect on GO samples.\",\"PeriodicalId\":93662,\"journal\":{\"name\":\"Journal of undergraduate reports in physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1063/1.5129242\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of undergraduate reports in physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5129242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of undergraduate reports in physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5129242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Electron-Beam Irradiation on Graphene Oxide
Graphene oxide (GO) is a nanofilm composed of graphene with various oxygen functional groups attached. GO is of interest due to its unique mechanical-enhancement properties, its tunable electronic properties, and its potential use in the wide-scale production of graphene. Scanning electron microscopes (SEMs) are frequently used to characterize and study GO films. The purpose of this project was to study the effects of SEM-imaging on GO films. Using an SEM, we irradiated GO samples at electron beam-energies of 10, 20, and 30 keV (at a constant emission current of ~40 micro-amps) for times ranging from 15 minutes to one hour. Raman D- and G-band intensities were used to examine structural modifications/damage to GO samples as a function of beam energy and exposure time. The results suggest that imaging with a 30 keV electron beam for 30 minutes may lead to the formation of amorphous carbon, while imaging with 10 keV or 20 keV beams for 30 minutes does not have a significant effect on GO samples.