铝辅助连接件热成形影响因素的研究

IF 3.3 Q2 ENGINEERING, MANUFACTURING Journal of Manufacturing and Materials Processing Pub Date : 2023-08-10 DOI:10.3390/jmmp7040147
T. Borgert, Maximilian Henke, W. Homberg
{"title":"铝辅助连接件热成形影响因素的研究","authors":"T. Borgert, Maximilian Henke, W. Homberg","doi":"10.3390/jmmp7040147","DOIUrl":null,"url":null,"abstract":"The demands on joining technology are constantly increasing due to the consistent lightweight construction and the associated increasing material mix. To meet these requirements, the adaptability of the joining processes must be improved to be able to process different material combinations and to react to challenges caused by deviations in the process chain. One example of a highly adaptable process due to the two-step process sequence is thermomechanical joining with Friction Spun Joint Connectors (FSJCs) that can be individually adapted to the joint. In this paper, the potentials of the adaption in the two-stage joining process with aluminium auxiliary joining elements are investigated. To this end, it is first investigated whether a thermomechanical forming process can be used to achieve a uniform and controlled manufacturing regarding the process variable of the temperature as well as the geometry of the FSJC. Based on the successful proof of the high and good repeatability in the FSJC manufacturing, possibilities, and potentials for the targeted influencing of the process and FSJC geometry are shown, based on an extensive variation of the process input variables (delivery condition and thus mechanical properties of the raw parts as well as the process parameters of rotational speed and feed rate). Here it can be shown that above all, the feed rate of the final forming process has the strongest influence on the process and thus also offers the strongest possibilities for influencing it.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on the Influences of the Thermomechanical Manufacturing of Aluminium Auxiliary Joining Elements\",\"authors\":\"T. Borgert, Maximilian Henke, W. Homberg\",\"doi\":\"10.3390/jmmp7040147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demands on joining technology are constantly increasing due to the consistent lightweight construction and the associated increasing material mix. To meet these requirements, the adaptability of the joining processes must be improved to be able to process different material combinations and to react to challenges caused by deviations in the process chain. One example of a highly adaptable process due to the two-step process sequence is thermomechanical joining with Friction Spun Joint Connectors (FSJCs) that can be individually adapted to the joint. In this paper, the potentials of the adaption in the two-stage joining process with aluminium auxiliary joining elements are investigated. To this end, it is first investigated whether a thermomechanical forming process can be used to achieve a uniform and controlled manufacturing regarding the process variable of the temperature as well as the geometry of the FSJC. Based on the successful proof of the high and good repeatability in the FSJC manufacturing, possibilities, and potentials for the targeted influencing of the process and FSJC geometry are shown, based on an extensive variation of the process input variables (delivery condition and thus mechanical properties of the raw parts as well as the process parameters of rotational speed and feed rate). Here it can be shown that above all, the feed rate of the final forming process has the strongest influence on the process and thus also offers the strongest possibilities for influencing it.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7040147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7040147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

由于始终如一的轻质结构和相关的不断增加的材料组合,对连接技术的需求不断增加。为了满足这些要求,必须提高连接工艺的适应性,以便能够处理不同的材料组合,并对工艺链中偏差造成的挑战做出反应。由于两步工艺顺序,具有高度适应性的工艺的一个例子是使用摩擦旋接头连接器(FSJC)的热机械连接,该连接器可以单独地适应接头。本文研究了铝辅助连接元件在两阶段连接过程中的适应性潜力。为此,首先研究了是否可以使用热机械成型工艺来实现关于FSJC的温度和几何形状的工艺变量的均匀和受控的制造。基于FSJC制造中高且良好的可重复性的成功证明,基于过程输入变量的广泛变化(交付条件,从而原材料的机械性能以及转速和进给速率的过程参数),显示了对过程和FSJC几何形状产生有针对性影响的可能性和潜力。这里可以看出,最重要的是,最终成形过程的进给速率对该过程具有最强的影响,并且因此也提供了最强的影响可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigations on the Influences of the Thermomechanical Manufacturing of Aluminium Auxiliary Joining Elements
The demands on joining technology are constantly increasing due to the consistent lightweight construction and the associated increasing material mix. To meet these requirements, the adaptability of the joining processes must be improved to be able to process different material combinations and to react to challenges caused by deviations in the process chain. One example of a highly adaptable process due to the two-step process sequence is thermomechanical joining with Friction Spun Joint Connectors (FSJCs) that can be individually adapted to the joint. In this paper, the potentials of the adaption in the two-stage joining process with aluminium auxiliary joining elements are investigated. To this end, it is first investigated whether a thermomechanical forming process can be used to achieve a uniform and controlled manufacturing regarding the process variable of the temperature as well as the geometry of the FSJC. Based on the successful proof of the high and good repeatability in the FSJC manufacturing, possibilities, and potentials for the targeted influencing of the process and FSJC geometry are shown, based on an extensive variation of the process input variables (delivery condition and thus mechanical properties of the raw parts as well as the process parameters of rotational speed and feed rate). Here it can be shown that above all, the feed rate of the final forming process has the strongest influence on the process and thus also offers the strongest possibilities for influencing it.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
期刊最新文献
Assessing the Feasibility of Fabricating Thermoplastic Laminates from Unidirectional Tapes in Open Mold Environments Vickers Hardness Mechanical Models and Thermoplastic Polymer Injection-Molded Products’ Static Friction Coefficients Phase Composition, Microstructure and Mechanical Properties of Zr57Cu15Ni10Nb5 Alloy Obtained by Selective Laser Melting In-Process Machining Distortion Prediction Method Based on Bulk Residual Stresses Estimation from Reduced Layer Removal A Combined Microscopy Study of the Microstructural Evolution of Ferritic Stainless Steel upon Deep Drawing: The Role of Alloy Composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1