{"title":"河段内水鱼类组合结构","authors":"J. E. Mckenna","doi":"10.2174/1874213001710010001","DOIUrl":null,"url":null,"abstract":"INTRODUCTION The global connectedness of ecological systems and ecological problems is becoming ever more apparent, as are the associated complexities. As a result, effective large-scale conservation is relying more on regional modeling and assessment. These regional approaches allow for evaluation of resource conditions over large areas and often have multiscale capabilities allowing examination of conditions at finer scales, within limits (Prior-Magee et al. 2007, National Fish Habitat Board, 2010, McKenna and Johnson 2011, McKenna et al. 2015). Data management and analysis limitations, as well as the scale of the problems to be addressed, require these broad-scale efforts to assume uniform average habitat conditions and/or species assemblages or populations within stream reaches (McKenna et al. 2006, Sowa et al. 2007, Kanno et al. 2014). Stream reaches (in the Great Lakes Region) are typically small (< 3 km) rarely exceeding 10 km. They may be clearly defined on a map by upstream and downstream confluences and are often the minimum reporting units for broad scale analyses. The National Hydrography Database (NHD) is widely used as a geographic foundation of these analyses and is an effective information management and analysis tool, allowing for association of local and broad-scale habitat and biological information with each stream reach within a region or the entire nation (Huang and Frimpong 2016). The NHD stream network consists of confluence-to-confluence stream reaches that range widely in length and vary with spatial resolution (e.g., 1: 100,000 or 1: 24, 000).","PeriodicalId":39335,"journal":{"name":"Open Ecology Journal","volume":"10 1","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intra-reach Headwater Fish Assemblage Structure\",\"authors\":\"J. E. Mckenna\",\"doi\":\"10.2174/1874213001710010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION The global connectedness of ecological systems and ecological problems is becoming ever more apparent, as are the associated complexities. As a result, effective large-scale conservation is relying more on regional modeling and assessment. These regional approaches allow for evaluation of resource conditions over large areas and often have multiscale capabilities allowing examination of conditions at finer scales, within limits (Prior-Magee et al. 2007, National Fish Habitat Board, 2010, McKenna and Johnson 2011, McKenna et al. 2015). Data management and analysis limitations, as well as the scale of the problems to be addressed, require these broad-scale efforts to assume uniform average habitat conditions and/or species assemblages or populations within stream reaches (McKenna et al. 2006, Sowa et al. 2007, Kanno et al. 2014). Stream reaches (in the Great Lakes Region) are typically small (< 3 km) rarely exceeding 10 km. They may be clearly defined on a map by upstream and downstream confluences and are often the minimum reporting units for broad scale analyses. The National Hydrography Database (NHD) is widely used as a geographic foundation of these analyses and is an effective information management and analysis tool, allowing for association of local and broad-scale habitat and biological information with each stream reach within a region or the entire nation (Huang and Frimpong 2016). The NHD stream network consists of confluence-to-confluence stream reaches that range widely in length and vary with spatial resolution (e.g., 1: 100,000 or 1: 24, 000).\",\"PeriodicalId\":39335,\"journal\":{\"name\":\"Open Ecology Journal\",\"volume\":\"10 1\",\"pages\":\"1-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ecology Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874213001710010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ecology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874213001710010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
INTRODUCTION The global connectedness of ecological systems and ecological problems is becoming ever more apparent, as are the associated complexities. As a result, effective large-scale conservation is relying more on regional modeling and assessment. These regional approaches allow for evaluation of resource conditions over large areas and often have multiscale capabilities allowing examination of conditions at finer scales, within limits (Prior-Magee et al. 2007, National Fish Habitat Board, 2010, McKenna and Johnson 2011, McKenna et al. 2015). Data management and analysis limitations, as well as the scale of the problems to be addressed, require these broad-scale efforts to assume uniform average habitat conditions and/or species assemblages or populations within stream reaches (McKenna et al. 2006, Sowa et al. 2007, Kanno et al. 2014). Stream reaches (in the Great Lakes Region) are typically small (< 3 km) rarely exceeding 10 km. They may be clearly defined on a map by upstream and downstream confluences and are often the minimum reporting units for broad scale analyses. The National Hydrography Database (NHD) is widely used as a geographic foundation of these analyses and is an effective information management and analysis tool, allowing for association of local and broad-scale habitat and biological information with each stream reach within a region or the entire nation (Huang and Frimpong 2016). The NHD stream network consists of confluence-to-confluence stream reaches that range widely in length and vary with spatial resolution (e.g., 1: 100,000 or 1: 24, 000).
期刊介绍:
The Open Ecology Journal is an open access online journal which embraces the trans-disciplinary nature of ecology, seeking to publish original research articles, reviews, letters and guest edited single topic issues representing important scientific progress from all areas of ecology and its linkages to other fields. The journal also focuses on the basic principles of the natural environment and its conservation. Contributions may be based on any taxa, natural or artificial environments, biodiversity, spatial scales, temporal scales, and methods that advance this multi-faceted and dynamic science. The Open Ecology Journal also considers empirical and theoretical studies that promote the construction of a broadly applicable conceptual framework or that present rigorous tests or novel applications of ecological theory.