{"title":"TiO2纳米流体在圆形和方形管道中流动的热分析和流动分析","authors":"Amelia Shi Hann Wong, A. N. T. Tiong","doi":"10.1166/jon.2023.1913","DOIUrl":null,"url":null,"abstract":"A numerical study is conducted to observe the thermal and flow performance of TiO2 nanofluid in the circular and square ducts with different twisted tape arrangements. The presence of the twisted tape in the tube induces swirl flow, which aids in the heat transfer, but at\n the penalty of a higher friction factor. The results also reveal that the maximum Nusselt number enhancement is obtained in the circular tube when the counter-triple twisted tape arrangement (C-TTs) is adopted while it is co-triple twisted tape arrangement (Co-TTs) for the case of square duct.\n Besides, the highest friction factor is observed for the Co-TTs for both circular and square ducts. The heat transfer and friction factor in the circular duct are greater than that of the square duct. The highest thermal performance factor of 1.286 is obtained when the single twisted tape\n and 1.5% nanofluid are used in the circular tube. However, multiple twisted tape inserts in the square duct contributes to improved thermal performance at a relatively lower friction factor when compared to the circular tube. Therefore, it is recommended to implement the square duct with multiple\n inserts for compact or microchannel heat exchanger for heat transfer application.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and Flow Analysis of TiO2 Nanofluid Flow in Circular and Square Ducts with Multiple Twisted Tape Inserts\",\"authors\":\"Amelia Shi Hann Wong, A. N. T. Tiong\",\"doi\":\"10.1166/jon.2023.1913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical study is conducted to observe the thermal and flow performance of TiO2 nanofluid in the circular and square ducts with different twisted tape arrangements. The presence of the twisted tape in the tube induces swirl flow, which aids in the heat transfer, but at\\n the penalty of a higher friction factor. The results also reveal that the maximum Nusselt number enhancement is obtained in the circular tube when the counter-triple twisted tape arrangement (C-TTs) is adopted while it is co-triple twisted tape arrangement (Co-TTs) for the case of square duct.\\n Besides, the highest friction factor is observed for the Co-TTs for both circular and square ducts. The heat transfer and friction factor in the circular duct are greater than that of the square duct. The highest thermal performance factor of 1.286 is obtained when the single twisted tape\\n and 1.5% nanofluid are used in the circular tube. However, multiple twisted tape inserts in the square duct contributes to improved thermal performance at a relatively lower friction factor when compared to the circular tube. Therefore, it is recommended to implement the square duct with multiple\\n inserts for compact or microchannel heat exchanger for heat transfer application.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.1913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.1913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Thermal and Flow Analysis of TiO2 Nanofluid Flow in Circular and Square Ducts with Multiple Twisted Tape Inserts
A numerical study is conducted to observe the thermal and flow performance of TiO2 nanofluid in the circular and square ducts with different twisted tape arrangements. The presence of the twisted tape in the tube induces swirl flow, which aids in the heat transfer, but at
the penalty of a higher friction factor. The results also reveal that the maximum Nusselt number enhancement is obtained in the circular tube when the counter-triple twisted tape arrangement (C-TTs) is adopted while it is co-triple twisted tape arrangement (Co-TTs) for the case of square duct.
Besides, the highest friction factor is observed for the Co-TTs for both circular and square ducts. The heat transfer and friction factor in the circular duct are greater than that of the square duct. The highest thermal performance factor of 1.286 is obtained when the single twisted tape
and 1.5% nanofluid are used in the circular tube. However, multiple twisted tape inserts in the square duct contributes to improved thermal performance at a relatively lower friction factor when compared to the circular tube. Therefore, it is recommended to implement the square duct with multiple
inserts for compact or microchannel heat exchanger for heat transfer application.
期刊介绍:
Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.