不同材料在–196°C温度下吸附N2和Ar的性能比较

Q4 Energy Paliva Pub Date : 2022-06-30 DOI:10.35933/paliva.2022.02.04
Veronika Kyselová, K. Ciahotný
{"title":"不同材料在–196°C温度下吸附N2和Ar的性能比较","authors":"Veronika Kyselová, K. Ciahotný","doi":"10.35933/paliva.2022.02.04","DOIUrl":null,"url":null,"abstract":"The article is focused on comparing of the structural properties of different adsorption materials. The measurement of adsorption isotherms was carried out in nitrogen and argon at a temperature of –196 °C. The individual isotherms using selected samples were measured on an Autosorb ASiQ instrument. BET surfaces and total pore volumes of individual samples were calculated and compared from the resulting isotherms. The results show relatively high differences between the adsorption isotherm measured by using nitrogen and argon. For the Envisorb sample, which consists of up to 85% silicagel, the BET surface area calculated from the nitrogen adsorption isotherm was 45 % higher than when measuring the adsorption isotherm using argon as the adsorptive. For silicagel SGR 50 was the difference between BET surface area measurements with nitrogen and argon only 4 %. The opposite phenomenon was calculated for the material activated carbon SC 40, where the BET surface measured by argon was higher than BET surface measured by nitrogen.\nOf the adsorbents used, nitrogen appears to be more suitable; only for carbonbased microporous materials is it better to use argon as an adsorptive.\nThe evaluation of the measured adsorption isotherms by the t-plot method showed a good usability of this method when it is applied similarly to the BET method for adsorption isotherms in the range of adsorptive rel. pressure ranged from 0.05 to 0.35. This method is a reliable tool for determining the proportion of the smallest pores (micropores) in the total surface area of a given adsorbent. However, in the case of adsorbents with a very low proportion of micropores, its accuracy is lower.","PeriodicalId":36809,"journal":{"name":"Paliva","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Properties of Different Materials by Adsorptions N2 and Ar at Temperature –196 °C\",\"authors\":\"Veronika Kyselová, K. Ciahotný\",\"doi\":\"10.35933/paliva.2022.02.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article is focused on comparing of the structural properties of different adsorption materials. The measurement of adsorption isotherms was carried out in nitrogen and argon at a temperature of –196 °C. The individual isotherms using selected samples were measured on an Autosorb ASiQ instrument. BET surfaces and total pore volumes of individual samples were calculated and compared from the resulting isotherms. The results show relatively high differences between the adsorption isotherm measured by using nitrogen and argon. For the Envisorb sample, which consists of up to 85% silicagel, the BET surface area calculated from the nitrogen adsorption isotherm was 45 % higher than when measuring the adsorption isotherm using argon as the adsorptive. For silicagel SGR 50 was the difference between BET surface area measurements with nitrogen and argon only 4 %. The opposite phenomenon was calculated for the material activated carbon SC 40, where the BET surface measured by argon was higher than BET surface measured by nitrogen.\\nOf the adsorbents used, nitrogen appears to be more suitable; only for carbonbased microporous materials is it better to use argon as an adsorptive.\\nThe evaluation of the measured adsorption isotherms by the t-plot method showed a good usability of this method when it is applied similarly to the BET method for adsorption isotherms in the range of adsorptive rel. pressure ranged from 0.05 to 0.35. This method is a reliable tool for determining the proportion of the smallest pores (micropores) in the total surface area of a given adsorbent. However, in the case of adsorbents with a very low proportion of micropores, its accuracy is lower.\",\"PeriodicalId\":36809,\"journal\":{\"name\":\"Paliva\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Paliva\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35933/paliva.2022.02.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paliva","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35933/paliva.2022.02.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

本文着重比较了不同吸附材料的结构性能。吸附等温线的测量是在–196°C的温度下在氮气和氩气中进行的。使用所选样品的单独等温线在Autosorb ASiQ仪器上进行测量。根据所得等温线计算并比较单个样品的BET表面和总孔体积。结果显示,通过使用氮气和氩气测量的吸附等温线之间存在相对较高的差异。对于由高达85%的硅胶组成的Envisorb样品,根据氮吸附等温线计算的BET表面积比使用氩气作为吸附剂测量吸附等温线时高45%。对于硅胶,SGR50是用氮气和氩气测量的BET表面积之间的差异仅为4%。对于材料活性炭SC 40计算了相反的现象,其中通过氩气测量的BET表面高于通过氮气测量的BET表面。在所使用的吸附剂中,氮气似乎更合适;只有对于碳基微孔材料,最好使用氩气作为吸附剂。通过t图法对测量的吸附等温线的评估表明,当该方法类似于BET法应用于在0.05至0.35的吸附相对压力范围内的吸附等温线时,该方法具有良好的可用性。该方法是确定给定吸附剂总表面积中最小孔隙(微孔)比例的可靠工具。然而,在微孔比例非常低的吸附剂的情况下,其精度较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Properties of Different Materials by Adsorptions N2 and Ar at Temperature –196 °C
The article is focused on comparing of the structural properties of different adsorption materials. The measurement of adsorption isotherms was carried out in nitrogen and argon at a temperature of –196 °C. The individual isotherms using selected samples were measured on an Autosorb ASiQ instrument. BET surfaces and total pore volumes of individual samples were calculated and compared from the resulting isotherms. The results show relatively high differences between the adsorption isotherm measured by using nitrogen and argon. For the Envisorb sample, which consists of up to 85% silicagel, the BET surface area calculated from the nitrogen adsorption isotherm was 45 % higher than when measuring the adsorption isotherm using argon as the adsorptive. For silicagel SGR 50 was the difference between BET surface area measurements with nitrogen and argon only 4 %. The opposite phenomenon was calculated for the material activated carbon SC 40, where the BET surface measured by argon was higher than BET surface measured by nitrogen. Of the adsorbents used, nitrogen appears to be more suitable; only for carbonbased microporous materials is it better to use argon as an adsorptive. The evaluation of the measured adsorption isotherms by the t-plot method showed a good usability of this method when it is applied similarly to the BET method for adsorption isotherms in the range of adsorptive rel. pressure ranged from 0.05 to 0.35. This method is a reliable tool for determining the proportion of the smallest pores (micropores) in the total surface area of a given adsorbent. However, in the case of adsorbents with a very low proportion of micropores, its accuracy is lower.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Paliva
Paliva Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
0.50
自引率
0.00%
发文量
15
期刊最新文献
Halogenated polymers as a problematic component in the pyrolysis of waste plastics General Methods for the Analysis of Physical Properties of Fuels Possible Uses of Decommissioned Coke Batteries Comparison of sorbents based on Ca(OH)2 for removing HCl from flue gas Storage of a mixture of natural gas and hydrogen in underground gas reservoirs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1