Mao-Lan Zhang, Z. Gong, Yu Zhou, Yanmei Liu, Jun Li, Chengmin Huang
{"title":"峨眉山玄武岩古土壤对罗平世晚期较冷的赤道气候的估计","authors":"Mao-Lan Zhang, Z. Gong, Yu Zhou, Yanmei Liu, Jun Li, Chengmin Huang","doi":"10.1086/718351","DOIUrl":null,"url":null,"abstract":"Paleosols that developed on large igneous province flood basalts provide a valuable opportunity to quantitatively reconstruct the terrestrial paleoclimate during a given period. This study uses a newly constructed basaltic soil–climate function to obtain terrestrial paleoclimatic data following the termination of the Emeishan basalt eruption in the late Lopingian (∼253 Ma). The constructed relationships are mean annual temperature of 32.81e−0.4166X (R2=0.55, standard error [SE]=4.6°C) and mean annual precipitation of −875.5ln(X)+1792 (R2=0.69, SE=328 mm), where X=SiO2/(Al2O3+Fe2O3) (the Saf index). We collected samples from nine paleosol profiles developed on the last-phase Emeishan basalts and conducted field observations as well as micromorphological, mineral composition, and geochemical analyses. On the basis of these paleosols, we reconstructed the regional mean temperature and precipitation to be 18.9°C±4.6°C and 1546±328 mm, respectively. The regional climate was cooler than those in modern equatorial regions of similar latitudes. The reduced CO2 concentration in the atmosphere resulting from rapid weathering of Emeishan basalts in a tropical climate could have played a dominant role in causing the regional cool terrestrial paleoclimate following the termination of the Emeishan basalt eruption.","PeriodicalId":54826,"journal":{"name":"Journal of Geology","volume":"130 1","pages":"23 - 44"},"PeriodicalIF":1.5000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cooler Equatorial Climate in the Late Lopingian Estimated from Paleosols Developed on Emeishan Basalts\",\"authors\":\"Mao-Lan Zhang, Z. Gong, Yu Zhou, Yanmei Liu, Jun Li, Chengmin Huang\",\"doi\":\"10.1086/718351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Paleosols that developed on large igneous province flood basalts provide a valuable opportunity to quantitatively reconstruct the terrestrial paleoclimate during a given period. This study uses a newly constructed basaltic soil–climate function to obtain terrestrial paleoclimatic data following the termination of the Emeishan basalt eruption in the late Lopingian (∼253 Ma). The constructed relationships are mean annual temperature of 32.81e−0.4166X (R2=0.55, standard error [SE]=4.6°C) and mean annual precipitation of −875.5ln(X)+1792 (R2=0.69, SE=328 mm), where X=SiO2/(Al2O3+Fe2O3) (the Saf index). We collected samples from nine paleosol profiles developed on the last-phase Emeishan basalts and conducted field observations as well as micromorphological, mineral composition, and geochemical analyses. On the basis of these paleosols, we reconstructed the regional mean temperature and precipitation to be 18.9°C±4.6°C and 1546±328 mm, respectively. The regional climate was cooler than those in modern equatorial regions of similar latitudes. The reduced CO2 concentration in the atmosphere resulting from rapid weathering of Emeishan basalts in a tropical climate could have played a dominant role in causing the regional cool terrestrial paleoclimate following the termination of the Emeishan basalt eruption.\",\"PeriodicalId\":54826,\"journal\":{\"name\":\"Journal of Geology\",\"volume\":\"130 1\",\"pages\":\"23 - 44\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1086/718351\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1086/718351","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOLOGY","Score":null,"Total":0}
Cooler Equatorial Climate in the Late Lopingian Estimated from Paleosols Developed on Emeishan Basalts
Paleosols that developed on large igneous province flood basalts provide a valuable opportunity to quantitatively reconstruct the terrestrial paleoclimate during a given period. This study uses a newly constructed basaltic soil–climate function to obtain terrestrial paleoclimatic data following the termination of the Emeishan basalt eruption in the late Lopingian (∼253 Ma). The constructed relationships are mean annual temperature of 32.81e−0.4166X (R2=0.55, standard error [SE]=4.6°C) and mean annual precipitation of −875.5ln(X)+1792 (R2=0.69, SE=328 mm), where X=SiO2/(Al2O3+Fe2O3) (the Saf index). We collected samples from nine paleosol profiles developed on the last-phase Emeishan basalts and conducted field observations as well as micromorphological, mineral composition, and geochemical analyses. On the basis of these paleosols, we reconstructed the regional mean temperature and precipitation to be 18.9°C±4.6°C and 1546±328 mm, respectively. The regional climate was cooler than those in modern equatorial regions of similar latitudes. The reduced CO2 concentration in the atmosphere resulting from rapid weathering of Emeishan basalts in a tropical climate could have played a dominant role in causing the regional cool terrestrial paleoclimate following the termination of the Emeishan basalt eruption.
期刊介绍:
One of the oldest journals in geology, The Journal of Geology has since 1893 promoted the systematic philosophical and fundamental study of geology.
The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology, geomorphology, petrology, plate tectonics, volcanology, structural geology, mineralogy, and planetary sciences. Many of its articles have wide appeal for geologists, present research of topical relevance, and offer new geological insights through the application of innovative approaches and methods.