FOLD-RM:一种可扩展、高效、可解释的混合数据多类别分类归纳学习算法

IF 1.4 2区 数学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Theory and Practice of Logic Programming Pub Date : 2022-02-14 DOI:10.1017/S1471068422000205
Huaduo Wang, Farhad Shakerin, Gopal Gupta
{"title":"FOLD-RM:一种可扩展、高效、可解释的混合数据多类别分类归纳学习算法","authors":"Huaduo Wang, Farhad Shakerin, Gopal Gupta","doi":"10.1017/S1471068422000205","DOIUrl":null,"url":null,"abstract":"Abstract FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"22 1","pages":"658 - 677"},"PeriodicalIF":1.4000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FOLD-RM: A Scalable, Efficient, and Explainable Inductive Learning Algorithm for Multi-Category Classification of Mixed Data\",\"authors\":\"Huaduo Wang, Farhad Shakerin, Gopal Gupta\",\"doi\":\"10.1017/S1471068422000205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"22 1\",\"pages\":\"658 - 677\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/S1471068422000205\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/S1471068422000205","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5

摘要

摘要FOLD-RM是一种自动归纳学习算法,用于学习混合(数字和分类)数据的默认规则。它为多类别分类任务生成一个(可解释的)答案集编程(ASP)规则集,同时保持效率和可扩展性。FOLD-RM算法在性能上与广泛使用的最先进的算法(如XGBoost和多层感知器)具有竞争力,然而,与这些算法不同,FOLD-RM算法产生了一个可解释的模型。FOLD-RM在某些数据集,特别是大型数据集上的性能优于XGBoost。FOLD-RM还为预测提供了人性化的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FOLD-RM: A Scalable, Efficient, and Explainable Inductive Learning Algorithm for Multi-Category Classification of Mixed Data
Abstract FOLD-RM is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) answer set programming (ASP) rule set for multi-category classification tasks while maintaining efficiency and scalability. The FOLD-RM algorithm is competitive in performance with the widely used, state-of-the-art algorithms such as XGBoost and multi-layer perceptrons, however, unlike these algorithms, the FOLD-RM algorithm produces an explainable model. FOLD-RM outperforms XGBoost on some datasets, particularly large ones. FOLD-RM also provides human-friendly explanations for predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory and Practice of Logic Programming
Theory and Practice of Logic Programming 工程技术-计算机:理论方法
CiteScore
4.50
自引率
21.40%
发文量
40
审稿时长
>12 weeks
期刊介绍: Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.
期刊最新文献
Metric Temporal Equilibrium Logic over Timed Traces Multi-Shot Answer Set Programming for Flexible Payroll Management Unit Testing in ASP Revisited: Language and Test-Driven Development Environment Evaluating Datalog Tools for Meta-reasoning over OWL 2 QL Model Explanation via Support Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1