基于黄金和比特币价格实时预测的最优投资组合方法

IF 3.2 Q2 AUTOMATION & CONTROL SYSTEMS Systems Science & Control Engineering Pub Date : 2022-07-06 DOI:10.1080/21642583.2022.2096149
Zhongqi Miao, Wenxuan Huang
{"title":"基于黄金和比特币价格实时预测的最优投资组合方法","authors":"Zhongqi Miao, Wenxuan Huang","doi":"10.1080/21642583.2022.2096149","DOIUrl":null,"url":null,"abstract":"Aiming at the portfolio problem of gold and bitcoin with a given linear trading commission, this paper puts forward the stage implementation forecast and optimal portfolio model. In the aspect of data prediction, SMA is used to predict the initial data, LSTM is used to predict the price trend of long-term data, and daily updated real-time price data is predicted. Considering the risk aversion of investors, the heuristic algorithm is used to solve the daily trading strategy of maximizing utility from September 12th, 2016 to September 12th, 2021. The simulation analysis of the sliding window shows that the algorithm can realize reasonable prediction, which verifies the effectiveness of the algorithm.","PeriodicalId":46282,"journal":{"name":"Systems Science & Control Engineering","volume":"10 1","pages":"653 - 661"},"PeriodicalIF":3.2000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An optimal portfolio method based on real time prediction of gold and bitcoin prices\",\"authors\":\"Zhongqi Miao, Wenxuan Huang\",\"doi\":\"10.1080/21642583.2022.2096149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the portfolio problem of gold and bitcoin with a given linear trading commission, this paper puts forward the stage implementation forecast and optimal portfolio model. In the aspect of data prediction, SMA is used to predict the initial data, LSTM is used to predict the price trend of long-term data, and daily updated real-time price data is predicted. Considering the risk aversion of investors, the heuristic algorithm is used to solve the daily trading strategy of maximizing utility from September 12th, 2016 to September 12th, 2021. The simulation analysis of the sliding window shows that the algorithm can realize reasonable prediction, which verifies the effectiveness of the algorithm.\",\"PeriodicalId\":46282,\"journal\":{\"name\":\"Systems Science & Control Engineering\",\"volume\":\"10 1\",\"pages\":\"653 - 661\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems Science & Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/21642583.2022.2096149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Science & Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21642583.2022.2096149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对给定线性交易佣金的黄金和比特币组合问题,提出了阶段实施预测和最优组合模型。在数据预测方面,采用SMA对初始数据进行预测,采用LSTM对长期数据的价格趋势进行预测,并对每日更新的实时价格数据进行预测。考虑到投资者的风险规避,采用启发式算法求解2016年9月12日至2021年9月12日的效用最大化日交易策略。对滑动窗口的仿真分析表明,该算法能够实现合理的预测,验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An optimal portfolio method based on real time prediction of gold and bitcoin prices
Aiming at the portfolio problem of gold and bitcoin with a given linear trading commission, this paper puts forward the stage implementation forecast and optimal portfolio model. In the aspect of data prediction, SMA is used to predict the initial data, LSTM is used to predict the price trend of long-term data, and daily updated real-time price data is predicted. Considering the risk aversion of investors, the heuristic algorithm is used to solve the daily trading strategy of maximizing utility from September 12th, 2016 to September 12th, 2021. The simulation analysis of the sliding window shows that the algorithm can realize reasonable prediction, which verifies the effectiveness of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems Science & Control Engineering
Systems Science & Control Engineering AUTOMATION & CONTROL SYSTEMS-
CiteScore
9.50
自引率
2.40%
发文量
70
审稿时长
29 weeks
期刊介绍: Systems Science & Control Engineering is a world-leading fully open access journal covering all areas of theoretical and applied systems science and control engineering. The journal encourages the submission of original articles, reviews and short communications in areas including, but not limited to: · artificial intelligence · complex systems · complex networks · control theory · control applications · cybernetics · dynamical systems theory · operations research · systems biology · systems dynamics · systems ecology · systems engineering · systems psychology · systems theory
期刊最新文献
MS-YOLOv5: a lightweight algorithm for strawberry ripeness detection based on deep learning Research on the operation of integrated energy microgrid based on cluster power sharing mechanism Low-frequency operation control method for medium-voltage high-capacity FC-MMC type frequency converter Customized passenger path optimization for airport connections under carbon emissions restrictions Nonlinear impact analysis of built environment on urban road traffic safety risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1