偏高岭土在混凝土中作为补充胶凝材料的使用,重点关注耐久性

Q2 Engineering RILEM Technical Letters Pub Date : 2019-11-12 DOI:10.21809/rilemtechlett.2019.94
A. T. Bakera, M. Alexander
{"title":"偏高岭土在混凝土中作为补充胶凝材料的使用,重点关注耐久性","authors":"A. T. Bakera, M. Alexander","doi":"10.21809/rilemtechlett.2019.94","DOIUrl":null,"url":null,"abstract":"Numerous research efforts on metakaolin as a supplementary cementitious material (SCM) have been undertaken in the past 20 years. This material, while relatively expensive mainly due to low production volumes worldwide, nevertheless has a significantly lower production cost than Portland cement. However, industry remains tentative in considering metakaolin in concrete. This paper takes the view that industry should consider investing in the production and application of metakaolin in appropriate concrete projects, particularly in aggressive environments where plain Portland cement may be inadequate, and where other SCMs may not readily be available. The main contribution of the paper is a global review of recent studies on the use of metakaolin in different types of concrete. This international experience is then compared with results from a study on the durability performance of metakaolin concrete using local materials in the Western Cape province of South Africa, as a means of concrete performance improvement. The study investigates concrete durability properties: penetrability (sorptivity, permeability, conductivity and diffusion), mitigation of Alkali-Silica Reaction (ASR), and carbonation resistance. The concretes were prepared with three water-binder ratios (0.4, 0.5 and 0.6), and with metakaolin replacement levels of 0% (control), 10%, 15% and 20%. Performance results show that, with increasing metakaolin content, the transport properties of concrete are considerably improved, ASR expansion due to a highly reactive local aggregate decreases to non-deleterious levels, while no detrimental effect on carbonation is observed. Thus, metakaolin could serve as a valuable SCM to enhance the durability performance of concrete in local aggressive environments.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":"{\"title\":\"Use of metakaolin as supplementary cementitious material in concrete, with focus on durability properties\",\"authors\":\"A. T. Bakera, M. Alexander\",\"doi\":\"10.21809/rilemtechlett.2019.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous research efforts on metakaolin as a supplementary cementitious material (SCM) have been undertaken in the past 20 years. This material, while relatively expensive mainly due to low production volumes worldwide, nevertheless has a significantly lower production cost than Portland cement. However, industry remains tentative in considering metakaolin in concrete. This paper takes the view that industry should consider investing in the production and application of metakaolin in appropriate concrete projects, particularly in aggressive environments where plain Portland cement may be inadequate, and where other SCMs may not readily be available. The main contribution of the paper is a global review of recent studies on the use of metakaolin in different types of concrete. This international experience is then compared with results from a study on the durability performance of metakaolin concrete using local materials in the Western Cape province of South Africa, as a means of concrete performance improvement. The study investigates concrete durability properties: penetrability (sorptivity, permeability, conductivity and diffusion), mitigation of Alkali-Silica Reaction (ASR), and carbonation resistance. The concretes were prepared with three water-binder ratios (0.4, 0.5 and 0.6), and with metakaolin replacement levels of 0% (control), 10%, 15% and 20%. Performance results show that, with increasing metakaolin content, the transport properties of concrete are considerably improved, ASR expansion due to a highly reactive local aggregate decreases to non-deleterious levels, while no detrimental effect on carbonation is observed. Thus, metakaolin could serve as a valuable SCM to enhance the durability performance of concrete in local aggressive environments.\",\"PeriodicalId\":36420,\"journal\":{\"name\":\"RILEM Technical Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RILEM Technical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21809/rilemtechlett.2019.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/rilemtechlett.2019.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 44

摘要

近20年来,人们对偏高岭土作为一种辅助胶凝材料进行了大量的研究。这种材料,虽然相对昂贵,主要是由于世界范围内的低产量,但其生产成本明显低于波特兰水泥。然而,工业仍在考虑在混凝土中加入偏高岭土。本文认为,工业应考虑在适当的混凝土项目中投资生产和应用偏高岭土,特别是在普通硅酸盐水泥可能不足的恶劣环境中,以及其他SCMs可能不容易获得的地方。本文的主要贡献是对最近在不同类型混凝土中使用偏高岭土的研究进行了全球综述。然后将这一国际经验与南非西开普省使用当地材料进行的偏高岭土混凝土耐久性性能研究的结果进行比较,作为混凝土性能改进的一种手段。该研究考察了混凝土的耐久性性能:渗透性(吸附性、渗透性、导电性和扩散性)、碱-硅反应(ASR)的缓解性和抗碳化性。水胶比分别为0.4、0.5和0.6,偏高岭土替代量分别为0%(对照)、10%、15%和20%。性能结果表明,随着偏高岭土含量的增加,混凝土的输运性能显著改善,高活性局部骨料引起的ASR膨胀降低到无害水平,而对碳化没有不利影响。因此,偏高岭土可以作为一种有价值的SCM来提高混凝土在局部侵蚀环境中的耐久性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of metakaolin as supplementary cementitious material in concrete, with focus on durability properties
Numerous research efforts on metakaolin as a supplementary cementitious material (SCM) have been undertaken in the past 20 years. This material, while relatively expensive mainly due to low production volumes worldwide, nevertheless has a significantly lower production cost than Portland cement. However, industry remains tentative in considering metakaolin in concrete. This paper takes the view that industry should consider investing in the production and application of metakaolin in appropriate concrete projects, particularly in aggressive environments where plain Portland cement may be inadequate, and where other SCMs may not readily be available. The main contribution of the paper is a global review of recent studies on the use of metakaolin in different types of concrete. This international experience is then compared with results from a study on the durability performance of metakaolin concrete using local materials in the Western Cape province of South Africa, as a means of concrete performance improvement. The study investigates concrete durability properties: penetrability (sorptivity, permeability, conductivity and diffusion), mitigation of Alkali-Silica Reaction (ASR), and carbonation resistance. The concretes were prepared with three water-binder ratios (0.4, 0.5 and 0.6), and with metakaolin replacement levels of 0% (control), 10%, 15% and 20%. Performance results show that, with increasing metakaolin content, the transport properties of concrete are considerably improved, ASR expansion due to a highly reactive local aggregate decreases to non-deleterious levels, while no detrimental effect on carbonation is observed. Thus, metakaolin could serve as a valuable SCM to enhance the durability performance of concrete in local aggressive environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
期刊最新文献
X-ray computed tomography to observe the presence of water in macropores of cementitious materials From tomographic imaging to numerical simulations: an open-source workflow for true morphology mesoscale FE meshes Mechanical characterisation of bamboo for construction: the state-of-practice and future prospects Processing of earth-based materials: current situation and challenges ahead Processing of earth-based materials: current situation and challenges ahead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1