基于混合决策方法的转向架焊接集成制造智能系统

IF 3.8 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied System Innovation Pub Date : 2023-02-14 DOI:10.3390/asi6010029
Kainan Guan, Yang Sun, Guang Yang, Xinhua Yang
{"title":"基于混合决策方法的转向架焊接集成制造智能系统","authors":"Kainan Guan, Yang Sun, Guang Yang, Xinhua Yang","doi":"10.3390/asi6010029","DOIUrl":null,"url":null,"abstract":"To address the challenges of incomplete knowledge representation, independent decision ranges, and insufficient causal decisions in bogie welding decisions, this paper proposes a hybrid decision-making method and develops a corresponding intelligent system. The collaborative case, rule, and knowledge graph approach is used to support structured documents and domain causality decisions. In addition, we created a knowledge model of bogie welding characteristics and proposed a case-matching method based on empirical weights. Several entity categorizations and relationship extraction models were trained under supervised conditions while building the knowledge graph. CRF and CR-CNN obtained high combined F1 scores (0.710 for CRF and 0.802 for CR-CNN) in the entity classification and relationship extraction tasks, respectively. We designed and developed an intelligent decision system based on the proposed method to implement engineering applications. This system was validated with some actual engineering data. The results show that the system obtained a high score on the accuracy test (0.947 for Corrected Accuracy) and can effectively complete structured document and causality decision-making tasks, having large research significance and engineering value.","PeriodicalId":36273,"journal":{"name":"Applied System Innovation","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Decision-Making-Method-Based Intelligent System for Integrated Bogie Welding Manufacturing\",\"authors\":\"Kainan Guan, Yang Sun, Guang Yang, Xinhua Yang\",\"doi\":\"10.3390/asi6010029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the challenges of incomplete knowledge representation, independent decision ranges, and insufficient causal decisions in bogie welding decisions, this paper proposes a hybrid decision-making method and develops a corresponding intelligent system. The collaborative case, rule, and knowledge graph approach is used to support structured documents and domain causality decisions. In addition, we created a knowledge model of bogie welding characteristics and proposed a case-matching method based on empirical weights. Several entity categorizations and relationship extraction models were trained under supervised conditions while building the knowledge graph. CRF and CR-CNN obtained high combined F1 scores (0.710 for CRF and 0.802 for CR-CNN) in the entity classification and relationship extraction tasks, respectively. We designed and developed an intelligent decision system based on the proposed method to implement engineering applications. This system was validated with some actual engineering data. The results show that the system obtained a high score on the accuracy test (0.947 for Corrected Accuracy) and can effectively complete structured document and causality decision-making tasks, having large research significance and engineering value.\",\"PeriodicalId\":36273,\"journal\":{\"name\":\"Applied System Innovation\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied System Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/asi6010029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied System Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/asi6010029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对转向架焊接决策中存在的知识表示不完全、决策范围独立、因果决策不充分等问题,提出了一种混合决策方法,并开发了相应的智能系统。协作案例、规则和知识图方法用于支持结构化文档和领域因果关系决策。建立了转向架焊接特性知识模型,提出了基于经验权重的案例匹配方法。在建立知识图谱的同时,在监督条件下训练了多个实体分类和关系提取模型。CRF和CR-CNN在实体分类和关系提取任务中分别获得了较高的F1综合得分(CRF为0.710,CR-CNN为0.802)。基于所提出的方法,设计并开发了一个智能决策系统,实现了工程应用。用实际工程数据对该系统进行了验证。结果表明,该系统在准确率测试中获得了较高的分数(校正准确率0.947),能够有效地完成结构化文档和因果关系决策任务,具有较大的研究意义和工程价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid Decision-Making-Method-Based Intelligent System for Integrated Bogie Welding Manufacturing
To address the challenges of incomplete knowledge representation, independent decision ranges, and insufficient causal decisions in bogie welding decisions, this paper proposes a hybrid decision-making method and develops a corresponding intelligent system. The collaborative case, rule, and knowledge graph approach is used to support structured documents and domain causality decisions. In addition, we created a knowledge model of bogie welding characteristics and proposed a case-matching method based on empirical weights. Several entity categorizations and relationship extraction models were trained under supervised conditions while building the knowledge graph. CRF and CR-CNN obtained high combined F1 scores (0.710 for CRF and 0.802 for CR-CNN) in the entity classification and relationship extraction tasks, respectively. We designed and developed an intelligent decision system based on the proposed method to implement engineering applications. This system was validated with some actual engineering data. The results show that the system obtained a high score on the accuracy test (0.947 for Corrected Accuracy) and can effectively complete structured document and causality decision-making tasks, having large research significance and engineering value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied System Innovation
Applied System Innovation Mathematics-Applied Mathematics
CiteScore
7.90
自引率
5.30%
发文量
102
审稿时长
11 weeks
期刊最新文献
Research on Chinese Nested Entity Recognition Based on IDCNNLR and GlobalPointer AI-Powered Academic Guidance and Counseling System Based on Student Profile and Interests Using Smart Traffic Lights to Reduce CO2 Emissions and Improve Traffic Flow at Intersections: Simulation of an Intersection in a Small Portuguese City Predictive Modeling of Light–Matter Interaction in One Dimension: A Dynamic Deep Learning Approach Project Management Efficiency Measurement with Data Envelopment Analysis: A Case in a Petrochemical Company
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1