基于深度学习的语义分割的自动分类

D. B. Demir, N. Musaoglu
{"title":"基于深度学习的语义分割的自动分类","authors":"D. B. Demir, N. Musaoglu","doi":"10.5194/isprs-archives-xlviii-m-3-2023-71-2023","DOIUrl":null,"url":null,"abstract":"Abstract. In this study, deep learning-based semantic segmentation is used to automatically generate CORINE land cover (CLC) Level 2 classes for a test region in Türkiye. This is accomplished by utilizing new datasets and models created from a pilot region in Italy, which exhibits similar land use/land cover (LU/LC) characteristics to the test region in Canakkale/Türkiye. The training and validation datasets for Italy were generated by employing Sentinel-2 images from various months and different band combinations, along with CLC 2018 vector data for labelling. Different datasets were created to investigate the impact of patch sizes (128 and 256 pixels) and seasonal changes in LU/LC. For the semantic segmentation task, the U-Net architecture was selected as the primary deep learning model. Furthermore, the U-Net architecture was used in conjunction with ResNet50 and ResNet101 for transfer learning, enabling the replacement of the encoder section of the U-Net. These models were tested in the Italy region, and the best-performing ones were subsequently applied to the Canakkale test region to automatically generate CLC 2018. The results were compared with published CLC 2018 Level 2 data for the same region, and the accuracy was assessed using the Intersection over Union (IoU) metric. The findings were presented both visually and statistically.\n","PeriodicalId":30634,"journal":{"name":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AUTOMATIC CLASSIFICATION OF SELECTED CORINE CLASSES USING DEEP LEARNING BASED SEMANTIC SEGMENTATION\",\"authors\":\"D. B. Demir, N. Musaoglu\",\"doi\":\"10.5194/isprs-archives-xlviii-m-3-2023-71-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. In this study, deep learning-based semantic segmentation is used to automatically generate CORINE land cover (CLC) Level 2 classes for a test region in Türkiye. This is accomplished by utilizing new datasets and models created from a pilot region in Italy, which exhibits similar land use/land cover (LU/LC) characteristics to the test region in Canakkale/Türkiye. The training and validation datasets for Italy were generated by employing Sentinel-2 images from various months and different band combinations, along with CLC 2018 vector data for labelling. Different datasets were created to investigate the impact of patch sizes (128 and 256 pixels) and seasonal changes in LU/LC. For the semantic segmentation task, the U-Net architecture was selected as the primary deep learning model. Furthermore, the U-Net architecture was used in conjunction with ResNet50 and ResNet101 for transfer learning, enabling the replacement of the encoder section of the U-Net. These models were tested in the Italy region, and the best-performing ones were subsequently applied to the Canakkale test region to automatically generate CLC 2018. The results were compared with published CLC 2018 Level 2 data for the same region, and the accuracy was assessed using the Intersection over Union (IoU) metric. The findings were presented both visually and statistically.\\n\",\"PeriodicalId\":30634,\"journal\":{\"name\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-71-2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/isprs-archives-xlviii-m-3-2023-71-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要在这项研究中,基于深度学习的语义分割用于自动生成土耳其测试区的CORINE土地覆盖(CLC)2级类。这是通过利用意大利试点地区创建的新数据集和模型来实现的,该地区的土地利用/土地覆盖(LU/LC)特征与土耳其卡纳卡莱的试点地区相似。意大利的训练和验证数据集是通过使用不同月份和不同波段组合的Sentinel-2图像,以及用于标记的CLC 2018矢量数据生成的。创建了不同的数据集来研究LU/LC中补丁大小(128和256像素)和季节变化的影响。对于语义分割任务,选择U-Net架构作为主要的深度学习模型。此外,U-Net架构与ResNet50和ResNet101一起用于迁移学习,从而能够替换U-Net的编码器部分。这些模型在意大利地区进行了测试,随后将性能最好的模型应用于Canakkale测试地区,以自动生成CLC 2018。将结果与同一地区已公布的CLC 2018第2级数据进行比较,并使用联合交集(IoU)度量评估准确性。研究结果在视觉上和统计学上都有体现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AUTOMATIC CLASSIFICATION OF SELECTED CORINE CLASSES USING DEEP LEARNING BASED SEMANTIC SEGMENTATION
Abstract. In this study, deep learning-based semantic segmentation is used to automatically generate CORINE land cover (CLC) Level 2 classes for a test region in Türkiye. This is accomplished by utilizing new datasets and models created from a pilot region in Italy, which exhibits similar land use/land cover (LU/LC) characteristics to the test region in Canakkale/Türkiye. The training and validation datasets for Italy were generated by employing Sentinel-2 images from various months and different band combinations, along with CLC 2018 vector data for labelling. Different datasets were created to investigate the impact of patch sizes (128 and 256 pixels) and seasonal changes in LU/LC. For the semantic segmentation task, the U-Net architecture was selected as the primary deep learning model. Furthermore, the U-Net architecture was used in conjunction with ResNet50 and ResNet101 for transfer learning, enabling the replacement of the encoder section of the U-Net. These models were tested in the Italy region, and the best-performing ones were subsequently applied to the Canakkale test region to automatically generate CLC 2018. The results were compared with published CLC 2018 Level 2 data for the same region, and the accuracy was assessed using the Intersection over Union (IoU) metric. The findings were presented both visually and statistically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
949
审稿时长
16 weeks
期刊最新文献
EVALUATION OF CONSUMER-GRADE AND SURVEY-GRADE UAV-LIDAR EVALUATING GEOMETRY OF AN INDOOR SCENARIO WITH OCCLUSIONS BASED ON TOTAL STATION MEASUREMENTS OF WALL ELEMENTS INVESTIGATION ON THE USE OF NeRF FOR HERITAGE 3D DENSE RECONSTRUCTION FOR INTERIOR SPACES TERRESTRIAL 3D MAPPING OF FORESTS: GEOREFERENCING CHALLENGES AND SENSORS COMPARISONS SPECTRAL ANALYSIS OF IMAGES OF PLANTS UNDER STRESS USING A CLOSE-RANGE CAMERA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1