螺旋肋薄壁钢管混凝土组合柱抗震性能及损伤评价

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Earthquakes and Structures Pub Date : 2021-06-01 DOI:10.12989/EAS.2021.20.6.669
Zhen-shan Wang, Yonggang Feng, Hong-chao Guo, Luo Junlong, J. Tian
{"title":"螺旋肋薄壁钢管混凝土组合柱抗震性能及损伤评价","authors":"Zhen-shan Wang, Yonggang Feng, Hong-chao Guo, Luo Junlong, J. Tian","doi":"10.12989/EAS.2021.20.6.669","DOIUrl":null,"url":null,"abstract":"As a new type of composite components, thin-walled concrete-filled steel tubes (CFSTs) have some advantages in terms of economy and processing. After the steel tube wall thins, the local buckling performance decreases and the stiffness decreases, which is not conducive to the structural safety. In this paper, combining the advantages of traditional spiral hoops and a stiffener, a new constraint in the form of a screw stiffener was proposed. On this basis, the composite member of thin-walled CFSTs with spiral ribs was put forward. The horizontal hysteretic test was carried out for the new composite column, and the failure mode, hysteretic characteristics, ductility, and energy dissipation capacity were obtained. The results showed that, compared with the traditional form, the seismic bearing capacity of the new composite column was increased by 11% and the ductility was increased by 45%. The deformation capacity was significantly improved. Based on experimental research, the seismic bearing capacity calculation and seismic damage assessment of the composite column were studied, and the practical calculation and the two-parameter damage assessment method considering the interaction between deformation and energy were proposed, which were in good agreement with the test results. This study can provide a technical basis for its engineering application. The composite column has good seismic performance, durability, and fire resistance, and thus has potential for application in practice.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic performance and damage evaluation of spiral ribbed thin-walled concrete filled and encased steel tube composite columns\",\"authors\":\"Zhen-shan Wang, Yonggang Feng, Hong-chao Guo, Luo Junlong, J. Tian\",\"doi\":\"10.12989/EAS.2021.20.6.669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new type of composite components, thin-walled concrete-filled steel tubes (CFSTs) have some advantages in terms of economy and processing. After the steel tube wall thins, the local buckling performance decreases and the stiffness decreases, which is not conducive to the structural safety. In this paper, combining the advantages of traditional spiral hoops and a stiffener, a new constraint in the form of a screw stiffener was proposed. On this basis, the composite member of thin-walled CFSTs with spiral ribs was put forward. The horizontal hysteretic test was carried out for the new composite column, and the failure mode, hysteretic characteristics, ductility, and energy dissipation capacity were obtained. The results showed that, compared with the traditional form, the seismic bearing capacity of the new composite column was increased by 11% and the ductility was increased by 45%. The deformation capacity was significantly improved. Based on experimental research, the seismic bearing capacity calculation and seismic damage assessment of the composite column were studied, and the practical calculation and the two-parameter damage assessment method considering the interaction between deformation and energy were proposed, which were in good agreement with the test results. This study can provide a technical basis for its engineering application. The composite column has good seismic performance, durability, and fire resistance, and thus has potential for application in practice.\",\"PeriodicalId\":49080,\"journal\":{\"name\":\"Earthquakes and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquakes and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/EAS.2021.20.6.669\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.6.669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

薄壁钢管混凝土作为一种新型的组合构件,在经济性和工艺性方面具有一定的优势。钢管壁变薄后,局部屈曲性能下降,刚度下降,不利于结构安全。本文结合传统螺旋箍和加劲肋的优点,提出了一种新的螺旋加劲肋形式的约束。在此基础上,提出了带螺旋肋薄壁钢管混凝土组合构件。对新型组合柱进行了水平滞回试验,得到了其破坏模式、滞回特性、延性和耗能能力。结果表明,与传统形式相比,新型组合柱的抗震承载力提高了11%,延性提高了45%。变形能力显著提高。在试验研究的基础上,对组合柱的抗震承载力计算和地震损伤评估进行了研究,提出了考虑变形与能量相互作用的实用计算和双参数损伤评估方法,与试验结果吻合较好。该研究可为其工程应用提供技术依据。该复合柱具有良好的抗震性能、耐久性和耐火性能,具有实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic performance and damage evaluation of spiral ribbed thin-walled concrete filled and encased steel tube composite columns
As a new type of composite components, thin-walled concrete-filled steel tubes (CFSTs) have some advantages in terms of economy and processing. After the steel tube wall thins, the local buckling performance decreases and the stiffness decreases, which is not conducive to the structural safety. In this paper, combining the advantages of traditional spiral hoops and a stiffener, a new constraint in the form of a screw stiffener was proposed. On this basis, the composite member of thin-walled CFSTs with spiral ribs was put forward. The horizontal hysteretic test was carried out for the new composite column, and the failure mode, hysteretic characteristics, ductility, and energy dissipation capacity were obtained. The results showed that, compared with the traditional form, the seismic bearing capacity of the new composite column was increased by 11% and the ductility was increased by 45%. The deformation capacity was significantly improved. Based on experimental research, the seismic bearing capacity calculation and seismic damage assessment of the composite column were studied, and the practical calculation and the two-parameter damage assessment method considering the interaction between deformation and energy were proposed, which were in good agreement with the test results. This study can provide a technical basis for its engineering application. The composite column has good seismic performance, durability, and fire resistance, and thus has potential for application in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquakes and Structures
Earthquakes and Structures ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
2.90
自引率
20.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response
期刊最新文献
Seismic behaviour of dams to near fault and far fault ground motions: A state of the art review Mathematical model and results for seismicresponses of a nonlinear isolation system Base-isolated steel structure with spring limitersunder near-fault earthquakes: Experiment Seismic performance assessment of code-conforming precast reinforced concrete frames in China Seismic Site Classification from HVSR Data using the Rayleigh wave ellipticity inversion: A case study in Singapore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1