TGF-β诱导的CCR8促进巨噬细胞转分化为肌成纤维细胞样细胞

IF 1.5 4区 医学 Q3 RESPIRATORY SYSTEM Experimental Lung Research Pub Date : 2022-04-04 DOI:10.1080/01902148.2022.2055227
Haijun Liu, Qingzhou Guan, Peng Zhao, Jiansheng Li
{"title":"TGF-β诱导的CCR8促进巨噬细胞转分化为肌成纤维细胞样细胞","authors":"Haijun Liu, Qingzhou Guan, Peng Zhao, Jiansheng Li","doi":"10.1080/01902148.2022.2055227","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown origin, characterized by tissue fibrosis, for which currently there is no effective treatment. Macrophages, the main immune cells in lung tissue, are involved in the whole process of pulmonary fibrosis. In recent years, intercellular transformation has led to wide spread concern among pulmonary fibrosis researchers. Macrophages with flexible heterogeneity and plasticity participate in different physiological processes in the body. Cell chemokine receptor 8 (CCR8) is expressed in a variety of cells and plays a significant chemotactic role in the induction of cell activation and migration. It can also promote the differentiation of macrophages under certain environmental conditions. The current study is intended to explore the role of CCR8 in macrophage to myofibroblast transdifferentiation (MMT) in IPF. <b>Methods:</b> We conducted experiments using CCR8-specific small interfering RNA (siRNA), an autophagy inhibitor (3-methyladenine, 3-MA), and an agonist (rapamycin) to explore the underlying mechanisms of macrophage transdifferentiation into myofibroblast cells in transforming growth factor-beta (TGF-β)-induced pulmonary fibrosis. <b>Results:</b> TGF-β treatment increased the CCR8 protein level in a time- and dose-dependent manner in mouse alveolar macrophages, as well as macrophage transdifferentiation-related markers, including vimentin, collagen 1, and a-SMA, and cell migration. In addition, the levels of autophagy were enhanced in macrophages treated with TGF-β. We found that 3-MA, an autophagy inhibitor, decreased the expression levels of macrophage transdifferentiation-related markers and attenuated cell migration. Furthermore, the inhibition of CCR8 via <i>CCR8</i>-specific siRNA reduced the levels of autophagy and macrophage transdifferentiation-related markers, and inhibited the cell migration. Enhancing autophagy with rapamycin attenuated the inhibition effect of <i>CCR8</i>-specific siRNA on macrophage migration and the increase in myofibroblast marker proteins. <b>Conclusions:</b> Our findings showed that the macrophages exposed to TGF-β had the potential to transdifferentiate into myofibroblasts and CCR8 was involved in the process. The effect of CCR8 on TGF-β-induced macrophage transdifferentiation occurs mainly through autophagy. Targeting CCR8 may be a novel therapeutic strategy for the treatment of IPF.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"48 1","pages":"1-14"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TGF-β-induced CCR8 promoted macrophage transdifferentiation into myofibroblast-like cells.\",\"authors\":\"Haijun Liu, Qingzhou Guan, Peng Zhao, Jiansheng Li\",\"doi\":\"10.1080/01902148.2022.2055227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown origin, characterized by tissue fibrosis, for which currently there is no effective treatment. Macrophages, the main immune cells in lung tissue, are involved in the whole process of pulmonary fibrosis. In recent years, intercellular transformation has led to wide spread concern among pulmonary fibrosis researchers. Macrophages with flexible heterogeneity and plasticity participate in different physiological processes in the body. Cell chemokine receptor 8 (CCR8) is expressed in a variety of cells and plays a significant chemotactic role in the induction of cell activation and migration. It can also promote the differentiation of macrophages under certain environmental conditions. The current study is intended to explore the role of CCR8 in macrophage to myofibroblast transdifferentiation (MMT) in IPF. <b>Methods:</b> We conducted experiments using CCR8-specific small interfering RNA (siRNA), an autophagy inhibitor (3-methyladenine, 3-MA), and an agonist (rapamycin) to explore the underlying mechanisms of macrophage transdifferentiation into myofibroblast cells in transforming growth factor-beta (TGF-β)-induced pulmonary fibrosis. <b>Results:</b> TGF-β treatment increased the CCR8 protein level in a time- and dose-dependent manner in mouse alveolar macrophages, as well as macrophage transdifferentiation-related markers, including vimentin, collagen 1, and a-SMA, and cell migration. In addition, the levels of autophagy were enhanced in macrophages treated with TGF-β. We found that 3-MA, an autophagy inhibitor, decreased the expression levels of macrophage transdifferentiation-related markers and attenuated cell migration. Furthermore, the inhibition of CCR8 via <i>CCR8</i>-specific siRNA reduced the levels of autophagy and macrophage transdifferentiation-related markers, and inhibited the cell migration. Enhancing autophagy with rapamycin attenuated the inhibition effect of <i>CCR8</i>-specific siRNA on macrophage migration and the increase in myofibroblast marker proteins. <b>Conclusions:</b> Our findings showed that the macrophages exposed to TGF-β had the potential to transdifferentiate into myofibroblasts and CCR8 was involved in the process. The effect of CCR8 on TGF-β-induced macrophage transdifferentiation occurs mainly through autophagy. Targeting CCR8 may be a novel therapeutic strategy for the treatment of IPF.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"48 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2022.2055227\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2022.2055227","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

摘要背景:特发性肺纤维化(IPF)是一种起源不明的间质性疾病,以组织纤维化为特征,目前尚无有效的治疗方法。巨噬细胞是肺组织中的主要免疫细胞,参与了肺纤维化的全过程。近年来,细胞间转化引起了肺纤维化研究人员的广泛关注。巨噬细胞具有灵活的异质性和可塑性,参与体内不同的生理过程。细胞趋化因子受体8(CCR8)在多种细胞中表达,并在诱导细胞活化和迁移中发挥重要的趋化作用。在一定的环境条件下,它还可以促进巨噬细胞的分化。本研究旨在探讨CCR8在IPF中巨噬细胞向肌成纤维细胞转分化(MMT)中的作用。方法:我们使用CCR8特异性小干扰RNA(siRNA)、自噬抑制剂(3-甲基腺嘌呤,3-MA)和激动剂(雷帕霉素)进行实验,以探索转化生长因子β(TGF-β)诱导的肺纤维化中巨噬细胞转分化为肌成纤维细胞的潜在机制。结果:TGF-β治疗以时间和剂量依赖的方式增加了小鼠肺泡巨噬细胞中CCR8蛋白水平,以及巨噬细胞转分化相关标志物,包括波形蛋白、胶原1和a-SMA,以及细胞迁移。此外,TGF-β处理的巨噬细胞的自噬水平增强。我们发现3-MA,一种自噬抑制剂,降低了巨噬细胞转分化相关标志物的表达水平,并减弱了细胞迁移。此外,通过CCR8特异性siRNA抑制CCR8降低了自噬和巨噬细胞转分化相关标志物的水平,并抑制了细胞迁移。雷帕霉素增强自噬减弱了CCR8特异性siRNA对巨噬细胞迁移的抑制作用和肌成纤维细胞标记蛋白的增加。结论:我们的研究结果表明,暴露于TGF-β的巨噬细胞具有转分化为肌成纤维细胞的潜力,CCR8参与了这一过程。CCR8对TGF-β诱导的巨噬细胞转分化的影响主要通过自噬发生。靶向CCR8可能是治疗IPF的一种新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TGF-β-induced CCR8 promoted macrophage transdifferentiation into myofibroblast-like cells.

Background: Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown origin, characterized by tissue fibrosis, for which currently there is no effective treatment. Macrophages, the main immune cells in lung tissue, are involved in the whole process of pulmonary fibrosis. In recent years, intercellular transformation has led to wide spread concern among pulmonary fibrosis researchers. Macrophages with flexible heterogeneity and plasticity participate in different physiological processes in the body. Cell chemokine receptor 8 (CCR8) is expressed in a variety of cells and plays a significant chemotactic role in the induction of cell activation and migration. It can also promote the differentiation of macrophages under certain environmental conditions. The current study is intended to explore the role of CCR8 in macrophage to myofibroblast transdifferentiation (MMT) in IPF. Methods: We conducted experiments using CCR8-specific small interfering RNA (siRNA), an autophagy inhibitor (3-methyladenine, 3-MA), and an agonist (rapamycin) to explore the underlying mechanisms of macrophage transdifferentiation into myofibroblast cells in transforming growth factor-beta (TGF-β)-induced pulmonary fibrosis. Results: TGF-β treatment increased the CCR8 protein level in a time- and dose-dependent manner in mouse alveolar macrophages, as well as macrophage transdifferentiation-related markers, including vimentin, collagen 1, and a-SMA, and cell migration. In addition, the levels of autophagy were enhanced in macrophages treated with TGF-β. We found that 3-MA, an autophagy inhibitor, decreased the expression levels of macrophage transdifferentiation-related markers and attenuated cell migration. Furthermore, the inhibition of CCR8 via CCR8-specific siRNA reduced the levels of autophagy and macrophage transdifferentiation-related markers, and inhibited the cell migration. Enhancing autophagy with rapamycin attenuated the inhibition effect of CCR8-specific siRNA on macrophage migration and the increase in myofibroblast marker proteins. Conclusions: Our findings showed that the macrophages exposed to TGF-β had the potential to transdifferentiate into myofibroblasts and CCR8 was involved in the process. The effect of CCR8 on TGF-β-induced macrophage transdifferentiation occurs mainly through autophagy. Targeting CCR8 may be a novel therapeutic strategy for the treatment of IPF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Lung Research
Experimental Lung Research 医学-呼吸系统
CiteScore
3.80
自引率
0.00%
发文量
23
审稿时长
2 months
期刊介绍: Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia. Authors can choose to publish gold open access in this journal.
期刊最新文献
Exosomes derived from hypoxic alveolar epithelial cells promote the phenotypic transformation of pulmonary artery smooth muscle cells via the Rap1 pathway Treatment with inhaled aerosolised ethanol reduces viral load and potentiates macrophage responses in an established influenza mouse model Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice Differential changes in expression of inflammatory mRNA and protein after oleic acid-induced acute lung injury CLCA1 exacerbates lung inflammation via p38 MAPK pathway in acute respiratory distress syndrome
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1