{"title":"两相热导体中的一个对称定理","authors":"Hyeonbae Kang, Shigeru Sakaguchi","doi":"10.3934/mine.2023061","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one medium has temperature 0 and the other has temperature 1. Under the assumptions that one medium is bounded and the interface is of class $ C^{2, \\alpha} $, we show that if the interface is stationary isothermic, then it must be a sphere. The method of moving planes due to Serrin is directly utilized to prove the result.","PeriodicalId":54213,"journal":{"name":"Mathematics in Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A symmetry theorem in two-phase heat conductors\",\"authors\":\"Hyeonbae Kang, Shigeru Sakaguchi\",\"doi\":\"10.3934/mine.2023061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one medium has temperature 0 and the other has temperature 1. Under the assumptions that one medium is bounded and the interface is of class $ C^{2, \\\\alpha} $, we show that if the interface is stationary isothermic, then it must be a sphere. The method of moving planes due to Serrin is directly utilized to prove the result.\",\"PeriodicalId\":54213,\"journal\":{\"name\":\"Mathematics in Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023061\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023061","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one medium has temperature 0 and the other has temperature 1. Under the assumptions that one medium is bounded and the interface is of class $ C^{2, \alpha} $, we show that if the interface is stationary isothermic, then it must be a sphere. The method of moving planes due to Serrin is directly utilized to prove the result.