算法1036:ATC,一种多维数据的高级Tucker压缩库

IF 2.7 1区 数学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING ACM Transactions on Mathematical Software Pub Date : 2023-03-01 DOI:10.1145/3585514
Wouter Baert, N. Vannieuwenhoven
{"title":"算法1036:ATC,一种多维数据的高级Tucker压缩库","authors":"Wouter Baert, N. Vannieuwenhoven","doi":"10.1145/3585514","DOIUrl":null,"url":null,"abstract":"We present ATC, a C++ library for advanced Tucker-based lossy compression of dense multidimensional numerical data in a shared-memory parallel setting, based on the sequentially truncated higher-order singular value decomposition (ST-HOSVD) and bit plane truncation. Several techniques are proposed to improve speed, memory usage, error control and compression rate. First, a hybrid truncation scheme is described which combines Tucker rank truncation and TTHRESH quantization. We derive a novel expression to approximate the error of truncated Tucker decompositions in the case of core and factor perturbations. We parallelize the quantization and encoding scheme and adjust this phase to improve error control. Implementation aspects are described, such as an ST-HOSVD procedure using only a single transposition. We also discuss several usability features of ATC, including the presence of multiple interfaces, extensive data type support, and integrated downsampling of the decompressed data. Numerical results show that ATC maintains state-of-the-art Tucker compression rates while providing average speed-up factors of 2.2 to 3.5 and halving memory usage. Our compressor provides precise error control, deviating only 1.4% from the requested error on average. Finally, ATC often achieves higher compression than non-Tucker-based compressors in the high-error domain.","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"49 1","pages":"1 - 25"},"PeriodicalIF":2.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algorithm 1036: ATC, An Advanced Tucker Compression Library for Multidimensional Data\",\"authors\":\"Wouter Baert, N. Vannieuwenhoven\",\"doi\":\"10.1145/3585514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present ATC, a C++ library for advanced Tucker-based lossy compression of dense multidimensional numerical data in a shared-memory parallel setting, based on the sequentially truncated higher-order singular value decomposition (ST-HOSVD) and bit plane truncation. Several techniques are proposed to improve speed, memory usage, error control and compression rate. First, a hybrid truncation scheme is described which combines Tucker rank truncation and TTHRESH quantization. We derive a novel expression to approximate the error of truncated Tucker decompositions in the case of core and factor perturbations. We parallelize the quantization and encoding scheme and adjust this phase to improve error control. Implementation aspects are described, such as an ST-HOSVD procedure using only a single transposition. We also discuss several usability features of ATC, including the presence of multiple interfaces, extensive data type support, and integrated downsampling of the decompressed data. Numerical results show that ATC maintains state-of-the-art Tucker compression rates while providing average speed-up factors of 2.2 to 3.5 and halving memory usage. Our compressor provides precise error control, deviating only 1.4% from the requested error on average. Finally, ATC often achieves higher compression than non-Tucker-based compressors in the high-error domain.\",\"PeriodicalId\":50935,\"journal\":{\"name\":\"ACM Transactions on Mathematical Software\",\"volume\":\"49 1\",\"pages\":\"1 - 25\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Mathematical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3585514\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3585514","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

基于顺序截断的高阶奇异值分解(ST-HOSVD)和位平面截断,我们提出了一个c++库ATC,用于在共享内存并行设置中对密集多维数值数据进行基于tucker的高级有损压缩。提出了几种提高速度、内存使用、错误控制和压缩率的技术。首先,提出了一种结合Tucker秩截断和TTHRESH量化的混合截断方案。我们推导了一个新的表达式来近似在核心和因子扰动情况下截断Tucker分解的误差。我们将量化和编码方案并行化,并调整相位以改善误差控制。描述了实现方面,例如仅使用单个换位的ST-HOSVD过程。我们还讨论了ATC的几个可用性特性,包括多个接口的存在、广泛的数据类型支持以及对解压缩数据的集成下采样。数值结果表明,ATC在提供2.2到3.5的平均加速因子和减半内存使用的同时,保持了最先进的Tucker压缩率。我们的压缩机提供精确的误差控制,平均误差仅为要求误差的1.4%。最后,在高误差域,ATC通常比非基于塔克的压缩器实现更高的压缩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm 1036: ATC, An Advanced Tucker Compression Library for Multidimensional Data
We present ATC, a C++ library for advanced Tucker-based lossy compression of dense multidimensional numerical data in a shared-memory parallel setting, based on the sequentially truncated higher-order singular value decomposition (ST-HOSVD) and bit plane truncation. Several techniques are proposed to improve speed, memory usage, error control and compression rate. First, a hybrid truncation scheme is described which combines Tucker rank truncation and TTHRESH quantization. We derive a novel expression to approximate the error of truncated Tucker decompositions in the case of core and factor perturbations. We parallelize the quantization and encoding scheme and adjust this phase to improve error control. Implementation aspects are described, such as an ST-HOSVD procedure using only a single transposition. We also discuss several usability features of ATC, including the presence of multiple interfaces, extensive data type support, and integrated downsampling of the decompressed data. Numerical results show that ATC maintains state-of-the-art Tucker compression rates while providing average speed-up factors of 2.2 to 3.5 and halving memory usage. Our compressor provides precise error control, deviating only 1.4% from the requested error on average. Finally, ATC often achieves higher compression than non-Tucker-based compressors in the high-error domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software 工程技术-计算机:软件工程
CiteScore
5.00
自引率
3.70%
发文量
50
审稿时长
>12 weeks
期刊介绍: As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.
期刊最新文献
Algorithm xxx: A Covariate-Dependent Approach to Gaussian Graphical Modeling in R Remark on Algorithm 1012: Computing projections with large data sets PyOED: An Extensible Suite for Data Assimilation and Model-Constrained Optimal Design of Experiments Avoiding breakdown in incomplete factorizations in low precision arithmetic Algorithm xxx: PyGenStability, a multiscale community detection with generalized Markov Stability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1