串联微加工工艺的发展以缓解微米级的加工问题:系统综述、挑战和未来机遇

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING Machining Science and Technology Pub Date : 2022-07-04 DOI:10.1080/10910344.2022.2129991
Sahil Sharma, Tarlochan Singh, A. Dvivedi
{"title":"串联微加工工艺的发展以缓解微米级的加工问题:系统综述、挑战和未来机遇","authors":"Sahil Sharma, Tarlochan Singh, A. Dvivedi","doi":"10.1080/10910344.2022.2129991","DOIUrl":null,"url":null,"abstract":"Abstract The requirement to fabricate the micro features in difficult-to-machine materials has increased the demand for new micro-machining processes. Over the years, various micro-machining processes have emerged, such as non-conventional, hybrid, and tandem micro-machining processes. Recently, among all of these processes, the tandem micro-machining processes have gained substantial attention. In these processes, two machining methods are arranged tandemly to mitigate the drawbacks of the primary one. This manuscript presents a comprehensive systematic review of the recent developments carried out in the novel tandem micro-machining processes. After conducting a literature review, the existing tandem micro-machining processes have been classified into four categories: Thermo plus Electrochemical, Thermo plus Mechanical, Thermo plus Thermo, and Hybrid plus Mechanical/Thermal. This work includes a detailed description of process conceptualization, process mechanisms, current development and capabilities of tandem micro-machining processes regarding work material and machined features. The manuscript’s originality illustrates how combining two processes could effectively produce intricate shapes in difficult-to-cut materials. Furthermore, the various steps involved in developing a tandem process from the idea formulation to the implementation stage have been discussed in the manuscript. The future opportunities in tandem micro-machining processes have also been identified and presented as research potential. While motivated by the systematic investigation, initial experimental results obtained from the in-house developed micro tandem machining processes such as W-EDM plus W-ECM and Laser plus W-ECM have also been included.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Developments in tandem micro-machining processes to mitigate the machining issues at micron level: a systematic review, challenges and future opportunities\",\"authors\":\"Sahil Sharma, Tarlochan Singh, A. Dvivedi\",\"doi\":\"10.1080/10910344.2022.2129991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The requirement to fabricate the micro features in difficult-to-machine materials has increased the demand for new micro-machining processes. Over the years, various micro-machining processes have emerged, such as non-conventional, hybrid, and tandem micro-machining processes. Recently, among all of these processes, the tandem micro-machining processes have gained substantial attention. In these processes, two machining methods are arranged tandemly to mitigate the drawbacks of the primary one. This manuscript presents a comprehensive systematic review of the recent developments carried out in the novel tandem micro-machining processes. After conducting a literature review, the existing tandem micro-machining processes have been classified into four categories: Thermo plus Electrochemical, Thermo plus Mechanical, Thermo plus Thermo, and Hybrid plus Mechanical/Thermal. This work includes a detailed description of process conceptualization, process mechanisms, current development and capabilities of tandem micro-machining processes regarding work material and machined features. The manuscript’s originality illustrates how combining two processes could effectively produce intricate shapes in difficult-to-cut materials. Furthermore, the various steps involved in developing a tandem process from the idea formulation to the implementation stage have been discussed in the manuscript. The future opportunities in tandem micro-machining processes have also been identified and presented as research potential. While motivated by the systematic investigation, initial experimental results obtained from the in-house developed micro tandem machining processes such as W-EDM plus W-ECM and Laser plus W-ECM have also been included.\",\"PeriodicalId\":51109,\"journal\":{\"name\":\"Machining Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machining Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10910344.2022.2129991\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2129991","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 3

摘要

在难加工材料中加工微特征的要求增加了对新型微加工工艺的需求。近年来,出现了各种微加工工艺,如非常规、混合和串联微加工工艺。近年来,在所有这些工艺中,串联微加工工艺得到了广泛的关注。在这些加工过程中,为了减轻原加工方法的缺点,将两种加工方法串联在一起。这份手稿提出了在新型串联微加工过程中进行的最新发展的全面系统的审查。通过文献综述,将现有的串联微加工工艺分为四类:热+电化学、热+机械、热+热、混合+机械/热。这项工作包括对工艺概念、工艺机制、当前的发展和关于工作材料和加工特征的串联微加工工艺的能力的详细描述。手稿的独创性说明了结合两种工艺如何有效地在难以切割的材料上产生复杂的形状。此外,从想法制定到实施阶段,在开发串联过程中涉及的各个步骤都在手稿中进行了讨论。未来的机会在串联微加工工艺也已确定,并提出了研究潜力。在系统研究的推动下,本文还包括了自主开发的微串联加工工艺(如W-EDM + W-ECM和激光+ W-ECM)的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developments in tandem micro-machining processes to mitigate the machining issues at micron level: a systematic review, challenges and future opportunities
Abstract The requirement to fabricate the micro features in difficult-to-machine materials has increased the demand for new micro-machining processes. Over the years, various micro-machining processes have emerged, such as non-conventional, hybrid, and tandem micro-machining processes. Recently, among all of these processes, the tandem micro-machining processes have gained substantial attention. In these processes, two machining methods are arranged tandemly to mitigate the drawbacks of the primary one. This manuscript presents a comprehensive systematic review of the recent developments carried out in the novel tandem micro-machining processes. After conducting a literature review, the existing tandem micro-machining processes have been classified into four categories: Thermo plus Electrochemical, Thermo plus Mechanical, Thermo plus Thermo, and Hybrid plus Mechanical/Thermal. This work includes a detailed description of process conceptualization, process mechanisms, current development and capabilities of tandem micro-machining processes regarding work material and machined features. The manuscript’s originality illustrates how combining two processes could effectively produce intricate shapes in difficult-to-cut materials. Furthermore, the various steps involved in developing a tandem process from the idea formulation to the implementation stage have been discussed in the manuscript. The future opportunities in tandem micro-machining processes have also been identified and presented as research potential. While motivated by the systematic investigation, initial experimental results obtained from the in-house developed micro tandem machining processes such as W-EDM plus W-ECM and Laser plus W-ECM have also been included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
期刊最新文献
Investigation on the machining characteristics of AZ91 magnesium alloy using uncoated and CVD-diamond coated WC-Co inserts Combination of minimum quantity lubrication (MQL) with solid lubricant (SL): challenges, predictions and implications for sustainability Novel insights into conventional machining of metal additive manufactured components: a comprehensive review Multiobjective optimization of end milling parameters for enhanced machining performance on 42CrMo4 using machine learning and NSGA-III Flow field design and simulation in electrochemical machining for closed integral components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1