采用人工神经网络布置统一潮流控制器,提高电力系统电压稳定性和可负荷性

Muhammad Khalid Saifullah, Md. Monirul Kabir, K. Rafiqul Islam
{"title":"采用人工神经网络布置统一潮流控制器,提高电力系统电压稳定性和可负荷性","authors":"Muhammad Khalid Saifullah, Md. Monirul Kabir, K. Rafiqul Islam","doi":"10.11591/ijece.v13i5.pp4868-4877","DOIUrl":null,"url":null,"abstract":"This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two-line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of voltage stability and loadability of power system employing the placement of unified power flow controller using artificial neural network\",\"authors\":\"Muhammad Khalid Saifullah, Md. Monirul Kabir, K. Rafiqul Islam\",\"doi\":\"10.11591/ijece.v13i5.pp4868-4877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two-line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4868-4877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4868-4877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文利用OPFANN人工神经网络,结合柔性交流输电系统(FACTS)的优化布局,提出了电力系统电压稳定性和负载性改进模型。该模型的关键方面是确定用于放置FACTS器件的最有可能发生电压崩溃的最弱线路。由于不可能安装一个新的电力系统网络来满足快速增长的电力需求,运营商通常将电力系统运行在接近稳定极限的地方。因此,持续监测和改善现有系统的电压稳定性和可负荷性是当今能源管理系统的重要问题。然而,所提出的OPFANN为使用神经网络的电压稳定监测系统引入了一种更直接、更快速的方案。设计了智能可靠的数据样本来训练基于两线电压稳定指标(LVSI)技术的人工神经网络。与其他工作相比,OPFANN通过在最薄弱的线路上安装统一潮流控制器(UPFC) FACTS器件,有效地提高了负载点的电压稳定性和负载性。OPFANN可以利用神经网络提供电压崩溃点信息,进一步降低LVSI的计算成本。最后,OPFANN保证了电力系统更快、更安全的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of voltage stability and loadability of power system employing the placement of unified power flow controller using artificial neural network
This paper proposes a voltage stability and loadability improvement model of power systems by incorporating the optimal placement of flexible alternating current transmission systems (FACTS) using an artificial neural network (ANN) called OPFANN. The key aspect of this model is to identify the weakest lines which having the most probability of voltage collapse utilized for placing FACTS devices. As installing a new power system network with rapidly increasing power demand cannot be possible, the operator usually operates the power system close to the stability limit. In this regard, continuous monitoring and improvement of system voltage stability and loadability of the existing system are vital issues for energy management systems nowadays. However, the proposed OPFANN introduces a more straightforward and faster scheme for voltage stability monitoring systems using ANN. Intelligent and reliable data samples have been designed to train the ANN based on two-line voltage stability indices (LVSI) techniques. Compared with other works, OPFANN effectively improves voltage stability and loadability at the load point by installing the unified power flow controller (UPFC) FACTS devices to the weakest lines. OPFANN can provide information on voltage collapse points using ANN and reduce the further computational cost of LVSI. Finally, OPFANN ensures faster and more secure operation of the power system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
期刊最新文献
Ranking load in microgrid based on fuzzy analytic hierarchy process and technique for order of preference by similarity to ideal solution algorithm for load shedding problem Explainable extreme boosting model for breast cancer diagnosis Automatic optical inspection for detecting keycaps misplacement using Tesseract optical character recognition A thermally aware performance analysis of quantum cellular automata logic gates Technical and market evaluation of thermal generation power plants in the Colombia power system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1