一种新型列车车顶风能转换系统

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY International Journal of Engineering Research in Africa Pub Date : 2022-07-25 DOI:10.4028/p-ha82nm
Asegid Kebede, G. Worku, Abreham Tibeb Maru
{"title":"一种新型列车车顶风能转换系统","authors":"Asegid Kebede, G. Worku, Abreham Tibeb Maru","doi":"10.4028/p-ha82nm","DOIUrl":null,"url":null,"abstract":"Cities all around the globe are ramping up efforts to transform their infrastructure in order to achieve a carbon-neutral and sustainable future, resulting in fast electrification of transportation networks. The need for power in this industry is rising, notably in light rail transit. Application of train rooftops wind energy conversion has the potential to power light rail transits with renewable energy. This research paper presents a way to generate electrical energy by utilizing strong wind pressure from light rail trains that channels the induced wind towards the turbine. The current invention's main aim is to establish a method and system for producing energy utilizing winds that can be conveniently available in the operation of trains. Here the wind energy is independent of the variations in the direction and speeds in which seasonal winds move, which do not have the appropriate wind force or force at all times or places for operating the wind turbines. Vertical axis wind turbines are selected due to their advantage for the application under consideration. SOLIDWORKS and MATLAB simulation software were used for the design of the Train Roof-Tops Wind Energy Conversion System (TRT-WECS). The former was used to perform computational fluid dynamics (CFD) on the both normal train as well as the train having a turbine installed on the top, and a comparison has been made in terms of various parameters that affect the performance of the newly designed TRT-WECS. A mathematical model comprising mechanical and electric components has been developed by using MATLAB. Finally, the study found out that this special TRT-WECS design installed in each train provides an annual energy output of 4.9 MWh.","PeriodicalId":45925,"journal":{"name":"International Journal of Engineering Research in Africa","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Train Roof-Top Wind Energy Conversion System\",\"authors\":\"Asegid Kebede, G. Worku, Abreham Tibeb Maru\",\"doi\":\"10.4028/p-ha82nm\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cities all around the globe are ramping up efforts to transform their infrastructure in order to achieve a carbon-neutral and sustainable future, resulting in fast electrification of transportation networks. The need for power in this industry is rising, notably in light rail transit. Application of train rooftops wind energy conversion has the potential to power light rail transits with renewable energy. This research paper presents a way to generate electrical energy by utilizing strong wind pressure from light rail trains that channels the induced wind towards the turbine. The current invention's main aim is to establish a method and system for producing energy utilizing winds that can be conveniently available in the operation of trains. Here the wind energy is independent of the variations in the direction and speeds in which seasonal winds move, which do not have the appropriate wind force or force at all times or places for operating the wind turbines. Vertical axis wind turbines are selected due to their advantage for the application under consideration. SOLIDWORKS and MATLAB simulation software were used for the design of the Train Roof-Tops Wind Energy Conversion System (TRT-WECS). The former was used to perform computational fluid dynamics (CFD) on the both normal train as well as the train having a turbine installed on the top, and a comparison has been made in terms of various parameters that affect the performance of the newly designed TRT-WECS. A mathematical model comprising mechanical and electric components has been developed by using MATLAB. Finally, the study found out that this special TRT-WECS design installed in each train provides an annual energy output of 4.9 MWh.\",\"PeriodicalId\":45925,\"journal\":{\"name\":\"International Journal of Engineering Research in Africa\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research in Africa\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-ha82nm\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research in Africa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-ha82nm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

全球各地的城市都在加紧努力改造其基础设施,以实现碳中和的和可持续的未来,从而实现交通网络的快速电气化。该行业对电力的需求正在上升,尤其是轻轨交通。列车车顶风能转换的应用具有利用可再生能源为轻轨交通提供动力的潜力。这篇研究论文提出了一种利用轻轨列车的强风压力产生电能的方法,该方法将感应风引导至涡轮机。本发明的主要目的是建立一种利用风产生能量的方法和系统,该方法和系统可以在列车运行中方便地获得。在这里,风能与季节性风移动的方向和速度的变化无关,季节性风在任何时候或任何地方都不具有用于操作风力涡轮机的适当风力。选择垂直轴风力涡轮机是因为它们对于所考虑的应用具有优势。采用SOLIDWORKS和MATLAB仿真软件对列车顶盖风能转换系统(TRT-WECS)进行了设计。前者用于对正常列车和顶部安装有涡轮机的列车进行计算流体动力学(CFD),并对影响新设计的TRT-WECS性能的各种参数进行了比较。利用MATLAB开发了一个包括机械和电气部件的数学模型。最后,研究发现,这种安装在每列列车上的特殊TRT-WECS设计可提供4.9MWh的年发电量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Train Roof-Top Wind Energy Conversion System
Cities all around the globe are ramping up efforts to transform their infrastructure in order to achieve a carbon-neutral and sustainable future, resulting in fast electrification of transportation networks. The need for power in this industry is rising, notably in light rail transit. Application of train rooftops wind energy conversion has the potential to power light rail transits with renewable energy. This research paper presents a way to generate electrical energy by utilizing strong wind pressure from light rail trains that channels the induced wind towards the turbine. The current invention's main aim is to establish a method and system for producing energy utilizing winds that can be conveniently available in the operation of trains. Here the wind energy is independent of the variations in the direction and speeds in which seasonal winds move, which do not have the appropriate wind force or force at all times or places for operating the wind turbines. Vertical axis wind turbines are selected due to their advantage for the application under consideration. SOLIDWORKS and MATLAB simulation software were used for the design of the Train Roof-Tops Wind Energy Conversion System (TRT-WECS). The former was used to perform computational fluid dynamics (CFD) on the both normal train as well as the train having a turbine installed on the top, and a comparison has been made in terms of various parameters that affect the performance of the newly designed TRT-WECS. A mathematical model comprising mechanical and electric components has been developed by using MATLAB. Finally, the study found out that this special TRT-WECS design installed in each train provides an annual energy output of 4.9 MWh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
14.30%
发文量
62
期刊介绍: "International Journal of Engineering Research in Africa" is a peer-reviewed journal which is devoted to the publication of original scientific articles on research and development of engineering systems carried out in Africa and worldwide. We publish stand-alone papers by individual authors. The articles should be related to theoretical research or be based on practical study. Articles which are not from Africa should have the potential of contributing to its progress and development.
期刊最新文献
Geometrical Parameter Optimization of Circular Cross-Section Conformal Cooling Channels in Injection Molds of Plastic Paving Block Molds International Journal of Engineering Research in Africa Vol. 70 Transient Stability Analysis of an Integrated Photovoltaic Systems in a Power System Numerical Finite Element Analysis of Cracked Stainless-Steel Pipe Repaired by GFRP in a Moist Environment Prediction of Flexural Properties of Additively Manufactured Short Fiber-Reinforced Polymer Composite Parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1