密封威慑装置的声信号设计

IF 0.5 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Control and Communication Engineering Pub Date : 2020-12-01 DOI:10.2478/ecce-2020-0011
A. Aboltins, J. Grizans, D. Pikulins, M. Terauds, M. Zeltins
{"title":"密封威慑装置的声信号设计","authors":"A. Aboltins, J. Grizans, D. Pikulins, M. Terauds, M. Zeltins","doi":"10.2478/ecce-2020-0011","DOIUrl":null,"url":null,"abstract":"Abstract During the past decade, attacks by grey seals on fishing nets in the Baltic Sea have caused considerable loss of fish catch and damage to fishing gears. One of the approaches to reduce the number of seal attacks on fishing nets is to use acoustic deterrent devices (ADDs). Unfortunately, most of the commercially available ADDs are not well suited to the deployment in the sea and require considerable additional investments. The objective of the present research is to develop a compact and cost-efficient ADD for deployment in the sea environment. This paper is devoted to the design of acoustic signals for a prototype ADD. Signals from other experimental and commercially available ADDs are studied and compared. Moreover, limitations imposed by the underwater environment, transducers, battery power, and fish hearing are analysed and considered during the development of signal patterns. The results of tests conducted in an artificial reservoir and in the sea are presented.","PeriodicalId":42365,"journal":{"name":"Electrical Control and Communication Engineering","volume":"16 1","pages":"72 - 77"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Acoustic Signals for a Seal Deterrent Device\",\"authors\":\"A. Aboltins, J. Grizans, D. Pikulins, M. Terauds, M. Zeltins\",\"doi\":\"10.2478/ecce-2020-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract During the past decade, attacks by grey seals on fishing nets in the Baltic Sea have caused considerable loss of fish catch and damage to fishing gears. One of the approaches to reduce the number of seal attacks on fishing nets is to use acoustic deterrent devices (ADDs). Unfortunately, most of the commercially available ADDs are not well suited to the deployment in the sea and require considerable additional investments. The objective of the present research is to develop a compact and cost-efficient ADD for deployment in the sea environment. This paper is devoted to the design of acoustic signals for a prototype ADD. Signals from other experimental and commercially available ADDs are studied and compared. Moreover, limitations imposed by the underwater environment, transducers, battery power, and fish hearing are analysed and considered during the development of signal patterns. The results of tests conducted in an artificial reservoir and in the sea are presented.\",\"PeriodicalId\":42365,\"journal\":{\"name\":\"Electrical Control and Communication Engineering\",\"volume\":\"16 1\",\"pages\":\"72 - 77\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Control and Communication Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ecce-2020-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Control and Communication Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ecce-2020-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要在过去的十年里,灰海豹袭击波罗的海的渔网,造成了相当大的渔获损失和渔具损坏。减少海豹攻击渔网次数的方法之一是使用声学威慑装置。不幸的是,大多数商用ADDs不太适合在海上部署,需要大量额外投资。本研究的目的是开发一种紧凑且经济高效的ADD,用于在海洋环境中部署。本文致力于ADD原型的声学信号设计。研究并比较了来自其他实验和商业上可获得的ADDs的信号。此外,在信号模式的发展过程中,还分析和考虑了水下环境、换能器、电池功率和鱼的听觉所带来的限制。介绍了在人工水库和海洋中进行的试验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Acoustic Signals for a Seal Deterrent Device
Abstract During the past decade, attacks by grey seals on fishing nets in the Baltic Sea have caused considerable loss of fish catch and damage to fishing gears. One of the approaches to reduce the number of seal attacks on fishing nets is to use acoustic deterrent devices (ADDs). Unfortunately, most of the commercially available ADDs are not well suited to the deployment in the sea and require considerable additional investments. The objective of the present research is to develop a compact and cost-efficient ADD for deployment in the sea environment. This paper is devoted to the design of acoustic signals for a prototype ADD. Signals from other experimental and commercially available ADDs are studied and compared. Moreover, limitations imposed by the underwater environment, transducers, battery power, and fish hearing are analysed and considered during the development of signal patterns. The results of tests conducted in an artificial reservoir and in the sea are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Control and Communication Engineering
Electrical Control and Communication Engineering ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
14.30%
发文量
0
审稿时长
12 weeks
期刊最新文献
Technical Condition Monitoring for Telecommunication and Radioelectronic Systems with Redundancy A State of the Art in Simultaneous Localization and Mapping (SLAM) for Unmanned Ariel Vehicle (UAV): A Review Three-Point Iterated Interval Half-Cutting for Finding All Local Minima of Unknown Single-Variable Function Automatic Vessel Steering in a Storm GPR Application for Non-Rigid Road Pavement Condition Assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1