土工屏障生物堵塞扩散模型的有限元分析

O. Ulianchuk-Martyniuk, O. Michuta, N. Ivanchuk
{"title":"土工屏障生物堵塞扩散模型的有限元分析","authors":"O. Ulianchuk-Martyniuk, O. Michuta, N. Ivanchuk","doi":"10.32523/2306-6172-2021-9-4-100-114","DOIUrl":null,"url":null,"abstract":"The distribution of an organic chemical and the filtration process in the soil which contains a thin geochemical barrier are considered. Microorganism colonies develop in the presence of organic chemicals in the soil which leads to the so-called phenomenon of bioclogging of the pore space. As a result, the conductivity characteristics of both the soil as a whole and the geochemical barrier change. Conjugation conditions as a component of the mathematical model of chemical filtration in the case of inhomogeneity of porous media and the presence of fine inclusions were modified for the case of bioclogging. The numerical solution of the corresponding nonlinear boundary value problem with modified conjugation conditions was found by the finite element method. The conditions of the existence of a generalized solution of the corresponding boundary value problem are indicated. The results on the theoretical accuracy of finite element solutions are presented. Differences in the value of pressure jumps at a thin geochemical barrier were analyzed for the case considered in the article and the classical case on a model example of filtration consolidation of the soil in the base of solid waste storage. The excess pressure in 600 days after the start of the process reaches 25 % of the initial value when taking into account the effect of bioclogging, while is only 6 % for the test case disregarding the specified effect.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FINITE ELEMENT ANALYSIS OF THE DIFFUSION MODEL OF THE BIOCLOGGING OF THE GEOBARRIER\",\"authors\":\"O. Ulianchuk-Martyniuk, O. Michuta, N. Ivanchuk\",\"doi\":\"10.32523/2306-6172-2021-9-4-100-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The distribution of an organic chemical and the filtration process in the soil which contains a thin geochemical barrier are considered. Microorganism colonies develop in the presence of organic chemicals in the soil which leads to the so-called phenomenon of bioclogging of the pore space. As a result, the conductivity characteristics of both the soil as a whole and the geochemical barrier change. Conjugation conditions as a component of the mathematical model of chemical filtration in the case of inhomogeneity of porous media and the presence of fine inclusions were modified for the case of bioclogging. The numerical solution of the corresponding nonlinear boundary value problem with modified conjugation conditions was found by the finite element method. The conditions of the existence of a generalized solution of the corresponding boundary value problem are indicated. The results on the theoretical accuracy of finite element solutions are presented. Differences in the value of pressure jumps at a thin geochemical barrier were analyzed for the case considered in the article and the classical case on a model example of filtration consolidation of the soil in the base of solid waste storage. The excess pressure in 600 days after the start of the process reaches 25 % of the initial value when taking into account the effect of bioclogging, while is only 6 % for the test case disregarding the specified effect.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32523/2306-6172-2021-9-4-100-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32523/2306-6172-2021-9-4-100-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了有机化学物质在含薄地球化学屏障的土壤中的分布和过滤过程。微生物菌落在土壤中有机化学物质存在的情况下发展,导致所谓的孔隙空间生物堵塞现象。因此,土壤的整体电导率特征和地球化学屏障都发生了变化。将共轭条件作为多孔介质不均匀和细包裹体存在情况下化学过滤数学模型的组成部分,修改为生物堵塞情况。利用有限元方法,得到了相应的非线性边值问题在修正共轭条件下的数值解。给出了相应边值问题的广义解存在的条件。给出了有限元解的理论精度结果。分析了本文所考虑的情况与固体废物贮存地基土壤过滤固结的典型情况在薄地球化学屏障处压力跳变值的差异。当考虑到生物堵塞的影响时,过程开始后600天内的超压达到初始值的25%,而不考虑指定影响的测试用例仅为6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
FINITE ELEMENT ANALYSIS OF THE DIFFUSION MODEL OF THE BIOCLOGGING OF THE GEOBARRIER
The distribution of an organic chemical and the filtration process in the soil which contains a thin geochemical barrier are considered. Microorganism colonies develop in the presence of organic chemicals in the soil which leads to the so-called phenomenon of bioclogging of the pore space. As a result, the conductivity characteristics of both the soil as a whole and the geochemical barrier change. Conjugation conditions as a component of the mathematical model of chemical filtration in the case of inhomogeneity of porous media and the presence of fine inclusions were modified for the case of bioclogging. The numerical solution of the corresponding nonlinear boundary value problem with modified conjugation conditions was found by the finite element method. The conditions of the existence of a generalized solution of the corresponding boundary value problem are indicated. The results on the theoretical accuracy of finite element solutions are presented. Differences in the value of pressure jumps at a thin geochemical barrier were analyzed for the case considered in the article and the classical case on a model example of filtration consolidation of the soil in the base of solid waste storage. The excess pressure in 600 days after the start of the process reaches 25 % of the initial value when taking into account the effect of bioclogging, while is only 6 % for the test case disregarding the specified effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1