用于提取共线模式的基交换和学习算法

IF 2.7 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Information and Telecommunication Pub Date : 2021-07-03 DOI:10.1080/24751839.2020.1866335
L. Bobrowski, Paweł Zabielski
{"title":"用于提取共线模式的基交换和学习算法","authors":"L. Bobrowski, Paweł Zabielski","doi":"10.1080/24751839.2020.1866335","DOIUrl":null,"url":null,"abstract":"ABSTRACT Understanding large data sets is one of the most important and challenging problems in the modern days. Exploration of genetic data sets composed of high dimensional feature vectors can be treated as a leading example in this context. A better understanding of large, multivariate data sets can be achieved through exploration and extraction of their structure. Collinear patterns can be an important part of a given data set structure. Collinear (flat) pattern exists in a given set of feature vectors when many of these vectors are located on (or near) some plane in the feature space. Discovered flat patterns can reflect various types of interaction in an explored data set. The presented paper compares basis exchange algorithms with learning algorithms in the task of flat patterns extraction.","PeriodicalId":32180,"journal":{"name":"Journal of Information and Telecommunication","volume":"5 1","pages":"334 - 349"},"PeriodicalIF":2.7000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24751839.2020.1866335","citationCount":"0","resultStr":"{\"title\":\"Basis exchange and learning algorithms for extracting collinear patterns\",\"authors\":\"L. Bobrowski, Paweł Zabielski\",\"doi\":\"10.1080/24751839.2020.1866335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Understanding large data sets is one of the most important and challenging problems in the modern days. Exploration of genetic data sets composed of high dimensional feature vectors can be treated as a leading example in this context. A better understanding of large, multivariate data sets can be achieved through exploration and extraction of their structure. Collinear patterns can be an important part of a given data set structure. Collinear (flat) pattern exists in a given set of feature vectors when many of these vectors are located on (or near) some plane in the feature space. Discovered flat patterns can reflect various types of interaction in an explored data set. The presented paper compares basis exchange algorithms with learning algorithms in the task of flat patterns extraction.\",\"PeriodicalId\":32180,\"journal\":{\"name\":\"Journal of Information and Telecommunication\",\"volume\":\"5 1\",\"pages\":\"334 - 349\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24751839.2020.1866335\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24751839.2020.1866335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24751839.2020.1866335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

理解大数据集是当今最重要和最具挑战性的问题之一。探索由高维特征向量组成的遗传数据集可以作为这方面的一个主要例子。通过探索和提取其结构,可以更好地理解大型多元数据集。共线模式可以是给定数据集结构的重要组成部分。当给定的一组特征向量中的许多向量位于(或接近)特征空间中的某个平面时,就存在共线(平坦)模式。已发现的平面模式可以反映已探索数据集中的各种交互类型。本文对平面模式提取任务中的基交换算法和学习算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Basis exchange and learning algorithms for extracting collinear patterns
ABSTRACT Understanding large data sets is one of the most important and challenging problems in the modern days. Exploration of genetic data sets composed of high dimensional feature vectors can be treated as a leading example in this context. A better understanding of large, multivariate data sets can be achieved through exploration and extraction of their structure. Collinear patterns can be an important part of a given data set structure. Collinear (flat) pattern exists in a given set of feature vectors when many of these vectors are located on (or near) some plane in the feature space. Discovered flat patterns can reflect various types of interaction in an explored data set. The presented paper compares basis exchange algorithms with learning algorithms in the task of flat patterns extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
0.00%
发文量
18
审稿时长
27 weeks
期刊最新文献
Utilizing deep learning in chipless RFID tag detection: an investigation on high-precision mm-wave spatial tag estimation from 2D virtual imaging On the performance of outage probability in cognitive NOMA random networks with hardware impairments Relay-assisted communication over a fluctuating two-ray fading channel Modified Caesar Cipher and Card Deck Shuffle Rearrangement Algorithm for Image Encryption Application of data envelopment analysis to IT project evaluation, with special emphasis on the choice of inputs and outputs in the context of the organization in question
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1