人工智能教育问题

AI matters Pub Date : 2021-09-01 DOI:10.1145/3511322.3511327
Lisa Zhang, Pouria Fewzee, Charbel Feghali
{"title":"人工智能教育问题","authors":"Lisa Zhang, Pouria Fewzee, Charbel Feghali","doi":"10.1145/3511322.3511327","DOIUrl":null,"url":null,"abstract":"We introduce a Model AI Assignment (Neller et al., 2021) where students combine various techniques from a deep learning course to build a denoising autoencoder (Shen, Mueller, Barzilay, & Jaakkola, 2020) for news headlines. Students then use this denoising autoencoder to query similar headlines, and interpolate between headlines. Building this denoising autoencoder requires students to apply many course concepts, including data augmentation, word and sentence embeddings, autoencoders, recurrent neural networks, sequence-to-sequence networks, and temperature. As such, this assignment can be ideal as a final assessment that synthesizes many topics. This assignment is written in PyTorch, uses the torchtext package, and is intended to be completed on the Google Colab platform.","PeriodicalId":91445,"journal":{"name":"AI matters","volume":"7 1","pages":"18 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI education matters\",\"authors\":\"Lisa Zhang, Pouria Fewzee, Charbel Feghali\",\"doi\":\"10.1145/3511322.3511327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Model AI Assignment (Neller et al., 2021) where students combine various techniques from a deep learning course to build a denoising autoencoder (Shen, Mueller, Barzilay, & Jaakkola, 2020) for news headlines. Students then use this denoising autoencoder to query similar headlines, and interpolate between headlines. Building this denoising autoencoder requires students to apply many course concepts, including data augmentation, word and sentence embeddings, autoencoders, recurrent neural networks, sequence-to-sequence networks, and temperature. As such, this assignment can be ideal as a final assessment that synthesizes many topics. This assignment is written in PyTorch, uses the torchtext package, and is intended to be completed on the Google Colab platform.\",\"PeriodicalId\":91445,\"journal\":{\"name\":\"AI matters\",\"volume\":\"7 1\",\"pages\":\"18 - 20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI matters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511322.3511327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI matters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511322.3511327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一个模型人工智能作业(Neller等人,2021),学生将深度学习课程中的各种技术结合起来,为新闻标题构建一个去噪自动编码器(Shen, Mueller, Barzilay, & Jaakkola, 2020)。然后,学生使用这个去噪自动编码器来查询相似的标题,并在标题之间进行插值。构建这个去噪自动编码器需要学生应用许多课程概念,包括数据增强、单词和句子嵌入、自动编码器、循环神经网络、序列到序列网络和温度。因此,这个作业可以作为综合许多主题的最终评估。本作业是用PyTorch编写的,使用torchtext包,并打算在谷歌Colab平台上完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI education matters
We introduce a Model AI Assignment (Neller et al., 2021) where students combine various techniques from a deep learning course to build a denoising autoencoder (Shen, Mueller, Barzilay, & Jaakkola, 2020) for news headlines. Students then use this denoising autoencoder to query similar headlines, and interpolate between headlines. Building this denoising autoencoder requires students to apply many course concepts, including data augmentation, word and sentence embeddings, autoencoders, recurrent neural networks, sequence-to-sequence networks, and temperature. As such, this assignment can be ideal as a final assessment that synthesizes many topics. This assignment is written in PyTorch, uses the torchtext package, and is intended to be completed on the Google Colab platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conference Reports Welcome to AI Matters 9(3) AI Policy Matters SIGAI Annual Report: July 1 2022 --- August 30 2023 Conference Reports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1