{"title":"人工智能教育问题","authors":"Lisa Zhang, Pouria Fewzee, Charbel Feghali","doi":"10.1145/3511322.3511327","DOIUrl":null,"url":null,"abstract":"We introduce a Model AI Assignment (Neller et al., 2021) where students combine various techniques from a deep learning course to build a denoising autoencoder (Shen, Mueller, Barzilay, & Jaakkola, 2020) for news headlines. Students then use this denoising autoencoder to query similar headlines, and interpolate between headlines. Building this denoising autoencoder requires students to apply many course concepts, including data augmentation, word and sentence embeddings, autoencoders, recurrent neural networks, sequence-to-sequence networks, and temperature. As such, this assignment can be ideal as a final assessment that synthesizes many topics. This assignment is written in PyTorch, uses the torchtext package, and is intended to be completed on the Google Colab platform.","PeriodicalId":91445,"journal":{"name":"AI matters","volume":"7 1","pages":"18 - 20"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI education matters\",\"authors\":\"Lisa Zhang, Pouria Fewzee, Charbel Feghali\",\"doi\":\"10.1145/3511322.3511327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a Model AI Assignment (Neller et al., 2021) where students combine various techniques from a deep learning course to build a denoising autoencoder (Shen, Mueller, Barzilay, & Jaakkola, 2020) for news headlines. Students then use this denoising autoencoder to query similar headlines, and interpolate between headlines. Building this denoising autoencoder requires students to apply many course concepts, including data augmentation, word and sentence embeddings, autoencoders, recurrent neural networks, sequence-to-sequence networks, and temperature. As such, this assignment can be ideal as a final assessment that synthesizes many topics. This assignment is written in PyTorch, uses the torchtext package, and is intended to be completed on the Google Colab platform.\",\"PeriodicalId\":91445,\"journal\":{\"name\":\"AI matters\",\"volume\":\"7 1\",\"pages\":\"18 - 20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI matters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511322.3511327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI matters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511322.3511327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce a Model AI Assignment (Neller et al., 2021) where students combine various techniques from a deep learning course to build a denoising autoencoder (Shen, Mueller, Barzilay, & Jaakkola, 2020) for news headlines. Students then use this denoising autoencoder to query similar headlines, and interpolate between headlines. Building this denoising autoencoder requires students to apply many course concepts, including data augmentation, word and sentence embeddings, autoencoders, recurrent neural networks, sequence-to-sequence networks, and temperature. As such, this assignment can be ideal as a final assessment that synthesizes many topics. This assignment is written in PyTorch, uses the torchtext package, and is intended to be completed on the Google Colab platform.