类岩石试件单轴压缩声发射应力记忆函数的实验研究

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Damage Mechanics Pub Date : 2023-08-01 DOI:10.1177/10567895231183008
Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang
{"title":"类岩石试件单轴压缩声发射应力记忆函数的实验研究","authors":"Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang","doi":"10.1177/10567895231183008","DOIUrl":null,"url":null,"abstract":"The Kaiser effect in rock acoustic emission (AE) test is the most direct manifestation of rock memory function. This article focuses on the influence of different deformation stages and different historical stress conditions on stress memory function, and conducts AE testing of rock-like specimens. It explained the stress memory function in AE testing from the perspectives of crack propagation and damage accumulation. The crack initiation stress σci and crack damage stress σcd of specimens were obtained based on the stress-strain curve method, and the different deformation stages were divided. The damage evolution coefficient D e was proposed to measure the size of the stable development range of damage based on the normalized crack initiation and crack damage stress. The historical stress in the elastic stage could be easily identified from the Kaiser effect during the reloading process, even if the time interval reached 120 hours. The Felicity effect appeared during the reloading process when the historical stress was in the stage of stable crack propagation, and the FR value showed a decreasing trend with the extension of the time interval between loading tests. The loading history in the elastic stage was a training for the AE stress memory function under complex historical stress conditions, which restored the Kaiser effect in the stage of stable crack propagation. The distribution of AE events and CT scanning results were also analyzed in the article, and the damage accumulation information characterized by both are basically consistent. The double Kaiser effect phenomenon appeared in the AE test under complex historical stress conditions, although the criterion for discriminating the AE signal at the Kaiser effect point corresponding to the lower stress remained to be further studied and verified.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"1008 - 1027"},"PeriodicalIF":4.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on acoustic emission stress memory function of rock-like specimens under uniaxial compression\",\"authors\":\"Yong Tian, R. Yu, Fanxiu Chen, Fanzhen Meng, Zhaojun Zhang\",\"doi\":\"10.1177/10567895231183008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kaiser effect in rock acoustic emission (AE) test is the most direct manifestation of rock memory function. This article focuses on the influence of different deformation stages and different historical stress conditions on stress memory function, and conducts AE testing of rock-like specimens. It explained the stress memory function in AE testing from the perspectives of crack propagation and damage accumulation. The crack initiation stress σci and crack damage stress σcd of specimens were obtained based on the stress-strain curve method, and the different deformation stages were divided. The damage evolution coefficient D e was proposed to measure the size of the stable development range of damage based on the normalized crack initiation and crack damage stress. The historical stress in the elastic stage could be easily identified from the Kaiser effect during the reloading process, even if the time interval reached 120 hours. The Felicity effect appeared during the reloading process when the historical stress was in the stage of stable crack propagation, and the FR value showed a decreasing trend with the extension of the time interval between loading tests. The loading history in the elastic stage was a training for the AE stress memory function under complex historical stress conditions, which restored the Kaiser effect in the stage of stable crack propagation. The distribution of AE events and CT scanning results were also analyzed in the article, and the damage accumulation information characterized by both are basically consistent. The double Kaiser effect phenomenon appeared in the AE test under complex historical stress conditions, although the criterion for discriminating the AE signal at the Kaiser effect point corresponding to the lower stress remained to be further studied and verified.\",\"PeriodicalId\":13837,\"journal\":{\"name\":\"International Journal of Damage Mechanics\",\"volume\":\"32 1\",\"pages\":\"1008 - 1027\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Damage Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/10567895231183008\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231183008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

岩石声发射(AE)试验中的Kaiser效应是岩石记忆功能最直接的表现。本文重点研究了不同变形阶段和不同历史应力条件对应力记忆功能的影响,并对类岩试件进行声发射测试。从裂纹扩展和损伤积累的角度解释声发射试验中的应力记忆功能。基于应力-应变曲线法得到了试样的裂纹萌生应力σci和裂纹损伤应力σcd,并对不同变形阶段进行了划分。基于归一化裂纹起裂和裂纹损伤应力,提出了损伤演化系数D e来衡量损伤稳定发展范围的大小。在重新加载过程中,即使时间间隔达到120 h,也可以很容易地从Kaiser效应中识别出弹性阶段的历史应力。在加载过程中,当历史应力处于稳定裂纹扩展阶段时,出现费利西蒂效应,且随着加载间隔时间的延长,FR值呈减小趋势。弹性阶段的加载历史是对复杂历史应力条件下声发射应力记忆函数的训练,恢复了裂纹稳定扩展阶段的Kaiser效应。本文还对声发射事件的分布与CT扫描结果进行了分析,两者表征的损伤累积信息基本一致。在复杂的历史应力条件下,声发射试验中出现了双Kaiser效应现象,但在较低应力对应的Kaiser效应点处识别声发射信号的判据还有待进一步研究和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on acoustic emission stress memory function of rock-like specimens under uniaxial compression
The Kaiser effect in rock acoustic emission (AE) test is the most direct manifestation of rock memory function. This article focuses on the influence of different deformation stages and different historical stress conditions on stress memory function, and conducts AE testing of rock-like specimens. It explained the stress memory function in AE testing from the perspectives of crack propagation and damage accumulation. The crack initiation stress σci and crack damage stress σcd of specimens were obtained based on the stress-strain curve method, and the different deformation stages were divided. The damage evolution coefficient D e was proposed to measure the size of the stable development range of damage based on the normalized crack initiation and crack damage stress. The historical stress in the elastic stage could be easily identified from the Kaiser effect during the reloading process, even if the time interval reached 120 hours. The Felicity effect appeared during the reloading process when the historical stress was in the stage of stable crack propagation, and the FR value showed a decreasing trend with the extension of the time interval between loading tests. The loading history in the elastic stage was a training for the AE stress memory function under complex historical stress conditions, which restored the Kaiser effect in the stage of stable crack propagation. The distribution of AE events and CT scanning results were also analyzed in the article, and the damage accumulation information characterized by both are basically consistent. The double Kaiser effect phenomenon appeared in the AE test under complex historical stress conditions, although the criterion for discriminating the AE signal at the Kaiser effect point corresponding to the lower stress remained to be further studied and verified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Formulation and verification of an anisotropic damage plasticity constitutive model for plain concrete On effective moduli of defective beam lattices via the lattice green’s functions Multi-scale study on the fatigue mechanical properties and energy laws of thermal-damage granite under fatigue loading A comparative study on combined high and low cycle fatigue life prediction model considering loading interaction Micro-damage instability mechanisms in composite materials: Cracking coalescence versus fibre ductility and slippage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1