{"title":"阿贝尔群中可分解集合的零和子集","authors":"T. Banakh, A. Ravsky","doi":"10.12958/adm1494","DOIUrl":null,"url":null,"abstract":"A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|<n=12|D|. Also we prove that every finite decomposable subset D of an Abelian group contains two non-empty subsets A,B such that ∑A+∑B=0.","PeriodicalId":44176,"journal":{"name":"Algebra & Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Zero-sum subsets of decomposable sets in Abelian groups\",\"authors\":\"T. Banakh, A. Ravsky\",\"doi\":\"10.12958/adm1494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|<n=12|D|. Also we prove that every finite decomposable subset D of an Abelian group contains two non-empty subsets A,B such that ∑A+∑B=0.\",\"PeriodicalId\":44176,\"journal\":{\"name\":\"Algebra & Discrete Mathematics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Algebra & Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12958/adm1494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12958/adm1494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Zero-sum subsets of decomposable sets in Abelian groups
A subset D of an abelian group is decomposable if ∅≠D⊂D+D. In the paper we give partial answers to an open problem asking whether every finite decomposable subset D of an abelian group contains a non-empty subset Z⊂D with ∑Z=0. For every n∈N we present a decomposable subset D of cardinality |D|=n in the cyclic group of order 2n−1 such that ∑D=0, but ∑T≠0 for any proper non-empty subset T⊂D. On the other hand, we prove that every decomposable subset D⊂R of cardinality |D|≤7 contains a non-empty subset T⊂D of cardinality |Z|≤12|D| with ∑Z=0. For every n∈N we present a subset D⊂Z of cardinality |D|=2n such that ∑Z=0 for some subset Z⊂D of cardinality |Z|=n and ∑T≠0 for any non-empty subset T⊂D of cardinality |T|