{"title":"低压条件下等温板强迫对流换热的相关性","authors":"Tianjun Luo, Yanjun Chen, Deqiang He, Yongli Chen","doi":"10.2514/1.t6846","DOIUrl":null,"url":null,"abstract":"With the rapid development of vacuum tube transport technology, there is increased interest in understanding the behavior of the heat transfer of rarefied gas in a vacuum tube. Currently, most empirical correlations of forced convection heat transfer are conducted at the standard atmospheric pressure, so many correlations are not applicable to conditions below the atmospheric pressure. To investigate the heat transfer property under low-pressure conditions, the forced convection between isothermal plate and air in a low-pressure environment is numerically simulated. The results show that the traditional correlation of the forced convection heat transfer between the isothermal plate and gases is different from the actual results at low pressure, and the correlation is completely invalid when the pressure is lower than 0.2 kPa. Based on the data of numerical calculation, a modified correlation of forced convection heat transfer between an isothermal plate and gases under low pressure is proposed. The correlation coefficient [Formula: see text] is greater than 0.99, and the fitting error is less than 10% at the 95% confidence level. The change of heat transfer depends on the Reynolds number in the pressure range of 0.2–100 kPa, but the effect of Reynolds number is weakened and the effect of pressure is strengthened when the pressure is below 0.2 kPa.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation of Forced Convection Heat Transfer of Isothermal Plate Under Low Pressure\",\"authors\":\"Tianjun Luo, Yanjun Chen, Deqiang He, Yongli Chen\",\"doi\":\"10.2514/1.t6846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of vacuum tube transport technology, there is increased interest in understanding the behavior of the heat transfer of rarefied gas in a vacuum tube. Currently, most empirical correlations of forced convection heat transfer are conducted at the standard atmospheric pressure, so many correlations are not applicable to conditions below the atmospheric pressure. To investigate the heat transfer property under low-pressure conditions, the forced convection between isothermal plate and air in a low-pressure environment is numerically simulated. The results show that the traditional correlation of the forced convection heat transfer between the isothermal plate and gases is different from the actual results at low pressure, and the correlation is completely invalid when the pressure is lower than 0.2 kPa. Based on the data of numerical calculation, a modified correlation of forced convection heat transfer between an isothermal plate and gases under low pressure is proposed. The correlation coefficient [Formula: see text] is greater than 0.99, and the fitting error is less than 10% at the 95% confidence level. The change of heat transfer depends on the Reynolds number in the pressure range of 0.2–100 kPa, but the effect of Reynolds number is weakened and the effect of pressure is strengthened when the pressure is below 0.2 kPa.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6846\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6846","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Correlation of Forced Convection Heat Transfer of Isothermal Plate Under Low Pressure
With the rapid development of vacuum tube transport technology, there is increased interest in understanding the behavior of the heat transfer of rarefied gas in a vacuum tube. Currently, most empirical correlations of forced convection heat transfer are conducted at the standard atmospheric pressure, so many correlations are not applicable to conditions below the atmospheric pressure. To investigate the heat transfer property under low-pressure conditions, the forced convection between isothermal plate and air in a low-pressure environment is numerically simulated. The results show that the traditional correlation of the forced convection heat transfer between the isothermal plate and gases is different from the actual results at low pressure, and the correlation is completely invalid when the pressure is lower than 0.2 kPa. Based on the data of numerical calculation, a modified correlation of forced convection heat transfer between an isothermal plate and gases under low pressure is proposed. The correlation coefficient [Formula: see text] is greater than 0.99, and the fitting error is less than 10% at the 95% confidence level. The change of heat transfer depends on the Reynolds number in the pressure range of 0.2–100 kPa, but the effect of Reynolds number is weakened and the effect of pressure is strengthened when the pressure is below 0.2 kPa.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.