Ali Hasannejad, J. Majrouhi Sardroud, A. A. Shirzadi Javid, Towhid Purrostam, M. H. Ramesht
{"title":"用模糊层次分析法对相关冲突进行优先排序,改进了冲突检测过程","authors":"Ali Hasannejad, J. Majrouhi Sardroud, A. A. Shirzadi Javid, Towhid Purrostam, M. H. Ramesht","doi":"10.1177/01436244221080023","DOIUrl":null,"url":null,"abstract":"Design coordination and clash detection are the most common and appreciated applications of three-dimensional modeling (3D modeling). In some projects, millions of clashes are detected including a large number of irrelevant clashes. The purpose of this research is to determine the priority of resolving clashes before the construction phase. In this research, the results of Autodesk Navisworks have been used to improve the process of clash detection. Also, this study attempts to use the fuzzy-AHP for weighting criteria and then, by presenting a relationship, to provide a basis to prioritizing clashes for their resolution and, finally, for identifying irrelevant clashes. This method has been tested on a real project, and the comparison of the expert opinions and the proposed method showed that applying the proposed relationship can identify important and irrelevant clashes. Practical application If clashes are not carefully detected in the design stage, project management components face a serious challenge. In this study, using the weight of clash elements and the degree of penetration of clash elements into each other, a logical and practical relationship is presented that improves the process of clash detection.","PeriodicalId":50724,"journal":{"name":"Building Services Engineering Research & Technology","volume":"43 1","pages":"485 - 506"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An improvement in clash detection process by prioritizing relevance clashes using fuzzy-AHP methods\",\"authors\":\"Ali Hasannejad, J. Majrouhi Sardroud, A. A. Shirzadi Javid, Towhid Purrostam, M. H. Ramesht\",\"doi\":\"10.1177/01436244221080023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design coordination and clash detection are the most common and appreciated applications of three-dimensional modeling (3D modeling). In some projects, millions of clashes are detected including a large number of irrelevant clashes. The purpose of this research is to determine the priority of resolving clashes before the construction phase. In this research, the results of Autodesk Navisworks have been used to improve the process of clash detection. Also, this study attempts to use the fuzzy-AHP for weighting criteria and then, by presenting a relationship, to provide a basis to prioritizing clashes for their resolution and, finally, for identifying irrelevant clashes. This method has been tested on a real project, and the comparison of the expert opinions and the proposed method showed that applying the proposed relationship can identify important and irrelevant clashes. Practical application If clashes are not carefully detected in the design stage, project management components face a serious challenge. In this study, using the weight of clash elements and the degree of penetration of clash elements into each other, a logical and practical relationship is presented that improves the process of clash detection.\",\"PeriodicalId\":50724,\"journal\":{\"name\":\"Building Services Engineering Research & Technology\",\"volume\":\"43 1\",\"pages\":\"485 - 506\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Services Engineering Research & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01436244221080023\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Services Engineering Research & Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01436244221080023","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
An improvement in clash detection process by prioritizing relevance clashes using fuzzy-AHP methods
Design coordination and clash detection are the most common and appreciated applications of three-dimensional modeling (3D modeling). In some projects, millions of clashes are detected including a large number of irrelevant clashes. The purpose of this research is to determine the priority of resolving clashes before the construction phase. In this research, the results of Autodesk Navisworks have been used to improve the process of clash detection. Also, this study attempts to use the fuzzy-AHP for weighting criteria and then, by presenting a relationship, to provide a basis to prioritizing clashes for their resolution and, finally, for identifying irrelevant clashes. This method has been tested on a real project, and the comparison of the expert opinions and the proposed method showed that applying the proposed relationship can identify important and irrelevant clashes. Practical application If clashes are not carefully detected in the design stage, project management components face a serious challenge. In this study, using the weight of clash elements and the degree of penetration of clash elements into each other, a logical and practical relationship is presented that improves the process of clash detection.
期刊介绍:
Building Services Engineering Research & Technology is one of the foremost, international peer reviewed journals that publishes the highest quality original research relevant to today’s Built Environment. Published in conjunction with CIBSE, this impressive journal reports on the latest research providing you with an invaluable guide to recent developments in the field.