{"title":"基于软硬件故障的多状态自动售票机可靠性评估","authors":"Amit Kumar, Pardeep Kumar","doi":"10.1108/JQME-08-2020-0089","DOIUrl":null,"url":null,"abstract":"PurposeThis paper presents the performance analysis of the automatic ticket vending machine (ATVM) through the functioning of its different hardware and software failures.Design/methodology/approachFrequent failures in the working of ATVM have been observed; therefore, the authors of the paper intend to analyze the performance measures of the same. Authors have developed a mathematical model based on different hardware and software failures/repairs, which may occur during the operation, with the help of the Markov process. The developed model has been solved for two kinds of failure/repair rates namely variable failures (very much similar to real-time failure) and constant failures. Lagrange's method and Laplace transformation are used for the solution of the developed model.FindingsReliability and mean time to failure of the ATVM are determined. Sensitivity analysis for ATVM is also carried out in the paper. Critical components of the ATVM, which affect the performance of the same, in terms of reliability and MTTF are also identified.Originality/valueA mathematical model based on different hardware and software failures/repairs of ATVM has been developed to analyze its performance, which has not been done in the past.","PeriodicalId":16938,"journal":{"name":"Journal of Quality in Maintenance Engineering","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reliability assessment for multi-state automatic ticket vending machine (ATVM) through software and hardware failures\",\"authors\":\"Amit Kumar, Pardeep Kumar\",\"doi\":\"10.1108/JQME-08-2020-0089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper presents the performance analysis of the automatic ticket vending machine (ATVM) through the functioning of its different hardware and software failures.Design/methodology/approachFrequent failures in the working of ATVM have been observed; therefore, the authors of the paper intend to analyze the performance measures of the same. Authors have developed a mathematical model based on different hardware and software failures/repairs, which may occur during the operation, with the help of the Markov process. The developed model has been solved for two kinds of failure/repair rates namely variable failures (very much similar to real-time failure) and constant failures. Lagrange's method and Laplace transformation are used for the solution of the developed model.FindingsReliability and mean time to failure of the ATVM are determined. Sensitivity analysis for ATVM is also carried out in the paper. Critical components of the ATVM, which affect the performance of the same, in terms of reliability and MTTF are also identified.Originality/valueA mathematical model based on different hardware and software failures/repairs of ATVM has been developed to analyze its performance, which has not been done in the past.\",\"PeriodicalId\":16938,\"journal\":{\"name\":\"Journal of Quality in Maintenance Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quality in Maintenance Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/JQME-08-2020-0089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality in Maintenance Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/JQME-08-2020-0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Reliability assessment for multi-state automatic ticket vending machine (ATVM) through software and hardware failures
PurposeThis paper presents the performance analysis of the automatic ticket vending machine (ATVM) through the functioning of its different hardware and software failures.Design/methodology/approachFrequent failures in the working of ATVM have been observed; therefore, the authors of the paper intend to analyze the performance measures of the same. Authors have developed a mathematical model based on different hardware and software failures/repairs, which may occur during the operation, with the help of the Markov process. The developed model has been solved for two kinds of failure/repair rates namely variable failures (very much similar to real-time failure) and constant failures. Lagrange's method and Laplace transformation are used for the solution of the developed model.FindingsReliability and mean time to failure of the ATVM are determined. Sensitivity analysis for ATVM is also carried out in the paper. Critical components of the ATVM, which affect the performance of the same, in terms of reliability and MTTF are also identified.Originality/valueA mathematical model based on different hardware and software failures/repairs of ATVM has been developed to analyze its performance, which has not been done in the past.
期刊介绍:
This exciting journal looks at maintenance engineering from a positive standpoint, and clarifies its recently elevatedstatus as a highly technical, scientific, and complex field. Typical areas examined include: ■Budget and control ■Equipment management ■Maintenance information systems ■Process capability and maintenance ■Process monitoring techniques ■Reliability-based maintenance ■Replacement and life cycle costs ■TQM and maintenance