$\mathcal{G}$-非扩张映射有限族的改进并行单调混合算法适用于一种新的信号恢复

Q1 Mathematics Results in Nonlinear Analysis Pub Date : 2022-09-30 DOI:10.53006/rna.1122092
K. Kankam, P. Cholamjiak, W. Cholamjiak
{"title":"$\\mathcal{G}$-非扩张映射有限族的改进并行单调混合算法适用于一种新的信号恢复","authors":"K. Kankam, P. Cholamjiak, W. Cholamjiak","doi":"10.53006/rna.1122092","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the strong convergence of the sequences generated by the shrinking projection method and the parallel monotone hybrid method to find a common fixed point of a finite family of $\\mathcal{G}$-nonexpansive mappings under suitable conditions in Hilbert spaces endowed with graphs. We also give some numerical examples and provide application to signal recovery under situation without knowing the type of noises. Moreover, numerical experiments of our algorithms which are defined by different types of blurred matrices and noises on the algorithm to show the efficiency and the implementation for LASSO problem in signal recovery.","PeriodicalId":36205,"journal":{"name":"Results in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A modified parallel monotone hybrid algorithm for a finite family of $\\\\mathcal{G}$-nonexpansive mappings apply to a novel signal recovery\",\"authors\":\"K. Kankam, P. Cholamjiak, W. Cholamjiak\",\"doi\":\"10.53006/rna.1122092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate the strong convergence of the sequences generated by the shrinking projection method and the parallel monotone hybrid method to find a common fixed point of a finite family of $\\\\mathcal{G}$-nonexpansive mappings under suitable conditions in Hilbert spaces endowed with graphs. We also give some numerical examples and provide application to signal recovery under situation without knowing the type of noises. Moreover, numerical experiments of our algorithms which are defined by different types of blurred matrices and noises on the algorithm to show the efficiency and the implementation for LASSO problem in signal recovery.\",\"PeriodicalId\":36205,\"journal\":{\"name\":\"Results in Nonlinear Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53006/rna.1122092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53006/rna.1122092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了由收缩投影方法和并行单调混合方法生成的序列的强收敛性,以在具有图的Hilbert空间中的适当条件下找到$\mathcal{G}$-非扩张映射的有限族的公共不动点。我们还给出了一些数值例子,并在不知道噪声类型的情况下提供了信号恢复的应用。此外,我们的算法由不同类型的模糊矩阵和噪声定义,在算法上的数值实验表明了LASSO问题在信号恢复中的有效性和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A modified parallel monotone hybrid algorithm for a finite family of $\mathcal{G}$-nonexpansive mappings apply to a novel signal recovery
In this work, we investigate the strong convergence of the sequences generated by the shrinking projection method and the parallel monotone hybrid method to find a common fixed point of a finite family of $\mathcal{G}$-nonexpansive mappings under suitable conditions in Hilbert spaces endowed with graphs. We also give some numerical examples and provide application to signal recovery under situation without knowing the type of noises. Moreover, numerical experiments of our algorithms which are defined by different types of blurred matrices and noises on the algorithm to show the efficiency and the implementation for LASSO problem in signal recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Nonlinear Analysis
Results in Nonlinear Analysis Mathematics-Mathematics (miscellaneous)
CiteScore
1.60
自引率
0.00%
发文量
34
审稿时长
8 weeks
期刊最新文献
Interpolation by Lupaş type operators on Tetrahedrons Certain new subclass of close-to-convex harmonic functions defined by a third-order differential inequality Weighted pretopological approach for decision accuracy in information system Dominations in bipolar picture fuzzy graphs and social networks Prediction nullity of graph using data mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1