A. Al‐Fatesh, Kenit Acharya, A. Osman, Ghazzai Almutairi, A. Fakeeha, A. Abasaeed, Yousef A. Al-Baqmaa, Rawesh Kumar
{"title":"氧化锆-氧化铝负载Ni-Fe催化剂甲烷干法重整动力学研究:分压和反应温度的影响","authors":"A. Al‐Fatesh, Kenit Acharya, A. Osman, Ghazzai Almutairi, A. Fakeeha, A. Abasaeed, Yousef A. Al-Baqmaa, Rawesh Kumar","doi":"10.1155/2023/8667432","DOIUrl":null,"url":null,"abstract":"<jats:p>A better understanding of the reaction mechanism and kinetics of dry reforming of methane (DRM) remains challenging, necessitating additional research to develop robust catalytic systems with high catalytic performance, low cost, and high stability. Herein, we prepared a zirconia-alumina-supported Ni-Fe catalyst and used it for DRM. Different partial pressures and temperatures are used to test the dry reforming of methane reaction as a detailed kinetic study. The optimal reaction conditions for DRM catalysis are 800°C reaction temperature, 43.42 kPa CO2 partial pressure, and 57.9 kPa CH4 partial pressure. At these optimal reaction conditions, the catalyst shows a 0.436 kPa2 equilibrium constant, a 0.7725 <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mi mathvariant=\"normal\">m</mi>\n <mi mathvariant=\"normal\">o</mi>\n <mi mathvariant=\"normal\">l</mi>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"normal\">C</mi>\n <mi mathvariant=\"normal\">H</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>/gCat/h rate of CH4 consumption, a 0.00651 <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msub>\n <mrow>\n <mi mathvariant=\"normal\">m</mi>\n <mi mathvariant=\"normal\">o</mi>\n <mi mathvariant=\"normal\">l</mi>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"normal\">C</mi>\n <mi mathvariant=\"normal\">H</mi>\n </mrow>\n <mrow>\n <mn>4</mn>\n </mrow>\n </msub>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>/m2/h arial rate of CH4 consumption, a 1.6515 <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msub>\n <mrow>\n <mi mathvariant=\"normal\">m</mi>\n <mi mathvariant=\"normal\">o</mi>\n <mi mathvariant=\"normal\">l</mi>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi mathvariant=\"normal\">H</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula>/gCat/h rate of H2 formation, a 1.4386 molCO/gCat/h rate of CO formation. This study’s findings will inspire the cost-effective production of robust catalytic systems and a better understanding of the DRM reaction’s kinetics.</jats:p>","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kinetic Study of Zirconia-Alumina-Supported Ni-Fe Catalyst for Dry Reforming of Methane: Impact of Partial Pressure and Reaction Temperature\",\"authors\":\"A. Al‐Fatesh, Kenit Acharya, A. Osman, Ghazzai Almutairi, A. Fakeeha, A. Abasaeed, Yousef A. Al-Baqmaa, Rawesh Kumar\",\"doi\":\"10.1155/2023/8667432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>A better understanding of the reaction mechanism and kinetics of dry reforming of methane (DRM) remains challenging, necessitating additional research to develop robust catalytic systems with high catalytic performance, low cost, and high stability. Herein, we prepared a zirconia-alumina-supported Ni-Fe catalyst and used it for DRM. Different partial pressures and temperatures are used to test the dry reforming of methane reaction as a detailed kinetic study. The optimal reaction conditions for DRM catalysis are 800°C reaction temperature, 43.42 kPa CO2 partial pressure, and 57.9 kPa CH4 partial pressure. At these optimal reaction conditions, the catalyst shows a 0.436 kPa2 equilibrium constant, a 0.7725 <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">m</mi>\\n <mi mathvariant=\\\"normal\\\">o</mi>\\n <mi mathvariant=\\\"normal\\\">l</mi>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">C</mi>\\n <mi mathvariant=\\\"normal\\\">H</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>/gCat/h rate of CH4 consumption, a 0.00651 <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">m</mi>\\n <mi mathvariant=\\\"normal\\\">o</mi>\\n <mi mathvariant=\\\"normal\\\">l</mi>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">C</mi>\\n <mi mathvariant=\\\"normal\\\">H</mi>\\n </mrow>\\n <mrow>\\n <mn>4</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>/m2/h arial rate of CH4 consumption, a 1.6515 <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">m</mi>\\n <mi mathvariant=\\\"normal\\\">o</mi>\\n <mi mathvariant=\\\"normal\\\">l</mi>\\n </mrow>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi mathvariant=\\\"normal\\\">H</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </msub>\\n </math>\\n </jats:inline-formula>/gCat/h rate of H2 formation, a 1.4386 molCO/gCat/h rate of CO formation. This study’s findings will inspire the cost-effective production of robust catalytic systems and a better understanding of the DRM reaction’s kinetics.</jats:p>\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8667432\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8667432","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 2
摘要
更好地理解甲烷干重整(DRM)的反应机理和动力学仍然具有挑战性,需要进行更多的研究来开发具有高催化性能、低成本和高稳定性的稳健催化系统。在此,我们制备了一种氧化锆-氧化铝负载的Ni-Fe催化剂,并将其用于DRM。采用不同的分压和温度对甲烷反应的干重整进行了详细的动力学研究。DRM催化的最佳反应条件为800°C反应温度,43.42 kPa CO2分压和57.9 kPa CH4分压。在这些最佳反应条件下,催化剂显示0.436 kPa2平衡常数,a 0.7725 m o l C H 4/gCat/h CH4消耗率,a 0.00651 m o l C H 4/m2/h arial CH4消耗率,a 1.6515 m o l H2/gCat/h H2形成速率,a 1.4386 molCO/gCat/h的CO形成速率。这项研究的发现将启发以成本效益生产强大的催化系统,并更好地了解DRM反应的动力学。
Kinetic Study of Zirconia-Alumina-Supported Ni-Fe Catalyst for Dry Reforming of Methane: Impact of Partial Pressure and Reaction Temperature
A better understanding of the reaction mechanism and kinetics of dry reforming of methane (DRM) remains challenging, necessitating additional research to develop robust catalytic systems with high catalytic performance, low cost, and high stability. Herein, we prepared a zirconia-alumina-supported Ni-Fe catalyst and used it for DRM. Different partial pressures and temperatures are used to test the dry reforming of methane reaction as a detailed kinetic study. The optimal reaction conditions for DRM catalysis are 800°C reaction temperature, 43.42 kPa CO2 partial pressure, and 57.9 kPa CH4 partial pressure. At these optimal reaction conditions, the catalyst shows a 0.436 kPa2 equilibrium constant, a 0.7725 /gCat/h rate of CH4 consumption, a 0.00651 /m2/h arial rate of CH4 consumption, a 1.6515 /gCat/h rate of H2 formation, a 1.4386 molCO/gCat/h rate of CO formation. This study’s findings will inspire the cost-effective production of robust catalytic systems and a better understanding of the DRM reaction’s kinetics.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.