{"title":"图片峡玄武岩:内部地层学、喷发模式及其对理解哥伦比亚河玄武岩群岩浆作用的重要性","authors":"E. Cahoon, M. Streck, A. Koppers","doi":"10.1130/ges02508.1","DOIUrl":null,"url":null,"abstract":"The Picture Gorge Basalt (PGB) of the Columbia River Basalt Group (CRBG) has been previously thought to be limited in its eruptive volume (<3000 km3) and thought to not extend far from its type locality. At present, PGB represents only 1.1 vol% of the CRBG with a relatively limited spatial distribution of ~10,000 km2. New age data illustrate that the PGB is the earliest and longest eruptive unit compared to other main-phase CRBG formations and that some dated basaltic flows reach far (~100 km) beyond the previously mapped extent. This study focuses on extensive outcrops of basaltic lavas and dikes south of the type locality at Picture Gorge, in order to reassess the spatial distribution and eruptive volume of the PGB. Field observations coupled with geochemical data indicate that PGB lava flows and mafic dikes covered a significantly greater area than shown on the published geologic maps. We find that additional mafic dikes located farther south of the original mapped distribution have geochemical compositions and northwest-trending orientations comparable to the dikes of the Monument dike swarm. We also identify new lava flows that can be correlated where stratigraphic control is well defined toward the original mapped PGB distribution. Our analyses and correlations are facilitated by comparison of 20 major- and trace-element abundances via a principal component analysis. This statistical comparison provides a new detailed distribution of PGB with stratigraphic significance that more than doubles the total distribution of PGB lavas and dikes and brings the eruptive volume to a new minimum of at least ~4200 km3. Geochemically correlated basaltic lavas and dikes in the extended distribution of PGB represent the earlier and later sections of the internal PGB stratigraphy. This is an intriguing observation as new geochronological data suggest an eruptive hiatus of ~400 k.y. during PGB volcanic activity, which occurred from 17.23 Ma to 15.76 Ma.\n The geochemical identifiers used to differentiate PGB from other main-phase CRBG formations include lower TiO2 (<2 wt%) concentrations, lower incompatible trace-element (i.e., La, Th, and Y) abundances, and a more pronounced enrichment in large-ion-lithophile elements (LILEs) on a primitive mantle–normalized trace-element diagram (Sun and McDonough, 1989). Geochemical characteristics of PGB are interpreted to represent a magmatic source component distinct from the other main-phase CRBG units, possibly a localized backarc-sourced mantle melt. However, this source cannot be spatially restricted as there are observed PGB lava flows and dikes extending as far east as Lake Owyhee and as far south as Hart Mountain, covering at least 15,000 km2. In context with the existing stratigraphy and the new extent of PGB lavas and dikes, these ages and coupled geochemical signatures demonstrate this mantle component was not spatially localized but rather tapped across a wide region.","PeriodicalId":55100,"journal":{"name":"Geosphere","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Picture Gorge Basalt: Internal stratigraphy, eruptive patterns, and its importance for understanding Columbia River Basalt Group magmatism\",\"authors\":\"E. Cahoon, M. Streck, A. Koppers\",\"doi\":\"10.1130/ges02508.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Picture Gorge Basalt (PGB) of the Columbia River Basalt Group (CRBG) has been previously thought to be limited in its eruptive volume (<3000 km3) and thought to not extend far from its type locality. At present, PGB represents only 1.1 vol% of the CRBG with a relatively limited spatial distribution of ~10,000 km2. New age data illustrate that the PGB is the earliest and longest eruptive unit compared to other main-phase CRBG formations and that some dated basaltic flows reach far (~100 km) beyond the previously mapped extent. This study focuses on extensive outcrops of basaltic lavas and dikes south of the type locality at Picture Gorge, in order to reassess the spatial distribution and eruptive volume of the PGB. Field observations coupled with geochemical data indicate that PGB lava flows and mafic dikes covered a significantly greater area than shown on the published geologic maps. We find that additional mafic dikes located farther south of the original mapped distribution have geochemical compositions and northwest-trending orientations comparable to the dikes of the Monument dike swarm. We also identify new lava flows that can be correlated where stratigraphic control is well defined toward the original mapped PGB distribution. Our analyses and correlations are facilitated by comparison of 20 major- and trace-element abundances via a principal component analysis. This statistical comparison provides a new detailed distribution of PGB with stratigraphic significance that more than doubles the total distribution of PGB lavas and dikes and brings the eruptive volume to a new minimum of at least ~4200 km3. Geochemically correlated basaltic lavas and dikes in the extended distribution of PGB represent the earlier and later sections of the internal PGB stratigraphy. This is an intriguing observation as new geochronological data suggest an eruptive hiatus of ~400 k.y. during PGB volcanic activity, which occurred from 17.23 Ma to 15.76 Ma.\\n The geochemical identifiers used to differentiate PGB from other main-phase CRBG formations include lower TiO2 (<2 wt%) concentrations, lower incompatible trace-element (i.e., La, Th, and Y) abundances, and a more pronounced enrichment in large-ion-lithophile elements (LILEs) on a primitive mantle–normalized trace-element diagram (Sun and McDonough, 1989). Geochemical characteristics of PGB are interpreted to represent a magmatic source component distinct from the other main-phase CRBG units, possibly a localized backarc-sourced mantle melt. However, this source cannot be spatially restricted as there are observed PGB lava flows and dikes extending as far east as Lake Owyhee and as far south as Hart Mountain, covering at least 15,000 km2. In context with the existing stratigraphy and the new extent of PGB lavas and dikes, these ages and coupled geochemical signatures demonstrate this mantle component was not spatially localized but rather tapped across a wide region.\",\"PeriodicalId\":55100,\"journal\":{\"name\":\"Geosphere\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1130/ges02508.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1130/ges02508.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Picture Gorge Basalt: Internal stratigraphy, eruptive patterns, and its importance for understanding Columbia River Basalt Group magmatism
The Picture Gorge Basalt (PGB) of the Columbia River Basalt Group (CRBG) has been previously thought to be limited in its eruptive volume (<3000 km3) and thought to not extend far from its type locality. At present, PGB represents only 1.1 vol% of the CRBG with a relatively limited spatial distribution of ~10,000 km2. New age data illustrate that the PGB is the earliest and longest eruptive unit compared to other main-phase CRBG formations and that some dated basaltic flows reach far (~100 km) beyond the previously mapped extent. This study focuses on extensive outcrops of basaltic lavas and dikes south of the type locality at Picture Gorge, in order to reassess the spatial distribution and eruptive volume of the PGB. Field observations coupled with geochemical data indicate that PGB lava flows and mafic dikes covered a significantly greater area than shown on the published geologic maps. We find that additional mafic dikes located farther south of the original mapped distribution have geochemical compositions and northwest-trending orientations comparable to the dikes of the Monument dike swarm. We also identify new lava flows that can be correlated where stratigraphic control is well defined toward the original mapped PGB distribution. Our analyses and correlations are facilitated by comparison of 20 major- and trace-element abundances via a principal component analysis. This statistical comparison provides a new detailed distribution of PGB with stratigraphic significance that more than doubles the total distribution of PGB lavas and dikes and brings the eruptive volume to a new minimum of at least ~4200 km3. Geochemically correlated basaltic lavas and dikes in the extended distribution of PGB represent the earlier and later sections of the internal PGB stratigraphy. This is an intriguing observation as new geochronological data suggest an eruptive hiatus of ~400 k.y. during PGB volcanic activity, which occurred from 17.23 Ma to 15.76 Ma.
The geochemical identifiers used to differentiate PGB from other main-phase CRBG formations include lower TiO2 (<2 wt%) concentrations, lower incompatible trace-element (i.e., La, Th, and Y) abundances, and a more pronounced enrichment in large-ion-lithophile elements (LILEs) on a primitive mantle–normalized trace-element diagram (Sun and McDonough, 1989). Geochemical characteristics of PGB are interpreted to represent a magmatic source component distinct from the other main-phase CRBG units, possibly a localized backarc-sourced mantle melt. However, this source cannot be spatially restricted as there are observed PGB lava flows and dikes extending as far east as Lake Owyhee and as far south as Hart Mountain, covering at least 15,000 km2. In context with the existing stratigraphy and the new extent of PGB lavas and dikes, these ages and coupled geochemical signatures demonstrate this mantle component was not spatially localized but rather tapped across a wide region.
期刊介绍:
Geosphere is GSA''s ambitious, online-only publication that addresses the growing need for timely publication of research results, data, software, and educational developments in ways that cannot be addressed by traditional formats. The journal''s rigorously peer-reviewed, high-quality research papers target an international audience in all geoscience fields. Its innovative format encourages extensive use of color, animations, interactivity, and oversize figures (maps, cross sections, etc.), and provides easy access to resources such as GIS databases, data archives, and modeling results. Geosphere''s broad scope and variety of contributions is a refreshing addition to traditional journals.