基于Blynk和Cayenne的广域网垃圾管理系统的设计与实现

S. Akram, Rajesh Singh, A. Gehlot, A. Thakur
{"title":"基于Blynk和Cayenne的广域网垃圾管理系统的设计与实现","authors":"S. Akram, Rajesh Singh, A. Gehlot, A. Thakur","doi":"10.22068/IJEEE.17.4.1941","DOIUrl":null,"url":null,"abstract":"Waste management is crucial for maintaining the hygienic environment in urban cities. The establishment of a reliable and efficient IoT system for waste management is based on integrating low power and long-range transmission protocol. Low Power Wide Area Network (LPWAN) is specially designed for the aforementioned requirement of IoT. LoRa (Long Range) is an LPWAN transmission protocol that consumes low power for long-range transmission. In this study, we are implementing long-range (LoRa) communication and cloud applications for real-time monitoring of the bins. The customized sensor node and gateway node are specifically designed for sensing the level of bins using ultrasonic sensor and communicating it to the cloud via long-range and internet protocol connectivity. Blynk and cayenne are the two cloud-based applications for storing and monitoring the sensory data receiving from the gateway node over internet protocol (IP). The customization of nodes6 and utilization of two cloud-based apps are the unique features in this study. In the future, we will implement blockchain technology in the study for enabling a waste-to-model platform.","PeriodicalId":39055,"journal":{"name":"Iranian Journal of Electrical and Electronic Engineering","volume":"17 1","pages":"1941-1941"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design and Implementation of a Wide Area Network Based Waste Management System Using Blynk and Cayenne Application\",\"authors\":\"S. Akram, Rajesh Singh, A. Gehlot, A. Thakur\",\"doi\":\"10.22068/IJEEE.17.4.1941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste management is crucial for maintaining the hygienic environment in urban cities. The establishment of a reliable and efficient IoT system for waste management is based on integrating low power and long-range transmission protocol. Low Power Wide Area Network (LPWAN) is specially designed for the aforementioned requirement of IoT. LoRa (Long Range) is an LPWAN transmission protocol that consumes low power for long-range transmission. In this study, we are implementing long-range (LoRa) communication and cloud applications for real-time monitoring of the bins. The customized sensor node and gateway node are specifically designed for sensing the level of bins using ultrasonic sensor and communicating it to the cloud via long-range and internet protocol connectivity. Blynk and cayenne are the two cloud-based applications for storing and monitoring the sensory data receiving from the gateway node over internet protocol (IP). The customization of nodes6 and utilization of two cloud-based apps are the unique features in this study. In the future, we will implement blockchain technology in the study for enabling a waste-to-model platform.\",\"PeriodicalId\":39055,\"journal\":{\"name\":\"Iranian Journal of Electrical and Electronic Engineering\",\"volume\":\"17 1\",\"pages\":\"1941-1941\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Electrical and Electronic Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22068/IJEEE.17.4.1941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Electrical and Electronic Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJEEE.17.4.1941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
引用次数: 2

摘要

废物管理对于维持城市卫生环境至关重要。建立可靠高效的废物管理物联网系统是基于集成低功耗和远程传输协议。低功耗广域网(LPWAN)是专门为上述物联网需求而设计的。LoRa(远程)是一种LPWAN传输协议,用于远程传输消耗低功率。在这项研究中,我们正在实现远程(LoRa)通信和云应用程序,以实时监控垃圾箱。定制的传感器节点和网关节点专门设计用于使用超声波传感器感测垃圾箱的液位,并通过远程和互联网协议连接将其传输到云端。Blynk和cayenne是两个基于云的应用程序,用于存储和监控通过互联网协议(IP)从网关节点接收的传感数据。节点6的定制和两个基于云的应用程序的利用是本研究的独特之处。未来,我们将在研究中实施区块链技术,以实现废物建模平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Implementation of a Wide Area Network Based Waste Management System Using Blynk and Cayenne Application
Waste management is crucial for maintaining the hygienic environment in urban cities. The establishment of a reliable and efficient IoT system for waste management is based on integrating low power and long-range transmission protocol. Low Power Wide Area Network (LPWAN) is specially designed for the aforementioned requirement of IoT. LoRa (Long Range) is an LPWAN transmission protocol that consumes low power for long-range transmission. In this study, we are implementing long-range (LoRa) communication and cloud applications for real-time monitoring of the bins. The customized sensor node and gateway node are specifically designed for sensing the level of bins using ultrasonic sensor and communicating it to the cloud via long-range and internet protocol connectivity. Blynk and cayenne are the two cloud-based applications for storing and monitoring the sensory data receiving from the gateway node over internet protocol (IP). The customization of nodes6 and utilization of two cloud-based apps are the unique features in this study. In the future, we will implement blockchain technology in the study for enabling a waste-to-model platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Electrical and Electronic Engineering
Iranian Journal of Electrical and Electronic Engineering Engineering-Electrical and Electronic Engineering
CiteScore
1.70
自引率
0.00%
发文量
13
审稿时长
12 weeks
期刊最新文献
Robust Operation Planning With Participation of Flexibility Resources Both on Generation and Demand Sides Under Uncertainty of Wind-based Generation Units A Novel Droop-based Control Strategy for Improving the Performance of VSC-MTDC Systems in Post-Contingency Conditions Securing Reliability Constrained Technology Combination for Isolated Micro-Grid Using Multi-Agent Based Optimization View-Invariant and Robust Gait Recognition Using Gait Energy Images of Leg Region and Masking Altered Sections Multiple Electricity Markets Competitiveness Undergoing Symmetric and Asymmetric Renewables Development Policies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1