从能量耗散中揭示酶的结构适应性

IF 4.3 3区 工程技术 Q1 MECHANICS Journal of Non-Equilibrium Thermodynamics Pub Date : 2023-07-07 DOI:10.1515/jnet-2023-0044
A. Arango-Restrepo, D. Barragán, J. Rubí
{"title":"从能量耗散中揭示酶的结构适应性","authors":"A. Arango-Restrepo, D. Barragán, J. Rubí","doi":"10.1515/jnet-2023-0044","DOIUrl":null,"url":null,"abstract":"Abstract While genetic mutations, natural selection and environmental pressures are well-known drivers of enzyme evolution, we show that their structural adaptations are significantly influenced by energy dissipation. Enzymes use chemical energy to do work, which results in a loss of free energy due to the irreversible nature of the process. By assuming that the catalytic process occurs along a potential barrier, we describe the kinetics of the conversion of enzyme-substrate complexes to enzyme-product complexes and calculate the energy dissipation. We show that the behaviour of the dissipated energy is a non-monotonic function of the energy of the intermediate state. This finding supports our main result that enzyme configurations evolve to minimise energy dissipation and simultaneously improve kinetic and thermodynamic efficiencies. Our study provides a novel insight into the complex process of enzyme evolution and highlights the crucial role of energy dissipation in shaping structural adaptations.","PeriodicalId":16428,"journal":{"name":"Journal of Non-Equilibrium Thermodynamics","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering enzymatic structural adaptations from energy dissipation\",\"authors\":\"A. Arango-Restrepo, D. Barragán, J. Rubí\",\"doi\":\"10.1515/jnet-2023-0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract While genetic mutations, natural selection and environmental pressures are well-known drivers of enzyme evolution, we show that their structural adaptations are significantly influenced by energy dissipation. Enzymes use chemical energy to do work, which results in a loss of free energy due to the irreversible nature of the process. By assuming that the catalytic process occurs along a potential barrier, we describe the kinetics of the conversion of enzyme-substrate complexes to enzyme-product complexes and calculate the energy dissipation. We show that the behaviour of the dissipated energy is a non-monotonic function of the energy of the intermediate state. This finding supports our main result that enzyme configurations evolve to minimise energy dissipation and simultaneously improve kinetic and thermodynamic efficiencies. Our study provides a novel insight into the complex process of enzyme evolution and highlights the crucial role of energy dissipation in shaping structural adaptations.\",\"PeriodicalId\":16428,\"journal\":{\"name\":\"Journal of Non-Equilibrium Thermodynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Equilibrium Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/jnet-2023-0044\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Equilibrium Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/jnet-2023-0044","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要虽然基因突变、自然选择和环境压力是酶进化的众所周知的驱动因素,但我们发现它们的结构适应受到能量耗散的显著影响。酶利用化学能做功,由于过程的不可逆性,这会导致自由能的损失。通过假设催化过程沿着势垒发生,我们描述了酶-底物复合物转化为酶-产物复合物的动力学,并计算了能量耗散。我们证明了耗散能量的行为是中间态能量的非单调函数。这一发现支持了我们的主要结果,即酶构型的进化可以最大限度地减少能量耗散,同时提高动力学和热力学效率。我们的研究为酶进化的复杂过程提供了新的见解,并强调了能量耗散在形成结构适应中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering enzymatic structural adaptations from energy dissipation
Abstract While genetic mutations, natural selection and environmental pressures are well-known drivers of enzyme evolution, we show that their structural adaptations are significantly influenced by energy dissipation. Enzymes use chemical energy to do work, which results in a loss of free energy due to the irreversible nature of the process. By assuming that the catalytic process occurs along a potential barrier, we describe the kinetics of the conversion of enzyme-substrate complexes to enzyme-product complexes and calculate the energy dissipation. We show that the behaviour of the dissipated energy is a non-monotonic function of the energy of the intermediate state. This finding supports our main result that enzyme configurations evolve to minimise energy dissipation and simultaneously improve kinetic and thermodynamic efficiencies. Our study provides a novel insight into the complex process of enzyme evolution and highlights the crucial role of energy dissipation in shaping structural adaptations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
18.20%
发文量
31
审稿时长
1 months
期刊介绍: The Journal of Non-Equilibrium Thermodynamics serves as an international publication organ for new ideas, insights and results on non-equilibrium phenomena in science, engineering and related natural systems. The central aim of the journal is to provide a bridge between science and engineering and to promote scientific exchange on a) newly observed non-equilibrium phenomena, b) analytic or numeric modeling for their interpretation, c) vanguard methods to describe non-equilibrium phenomena. Contributions should – among others – present novel approaches to analyzing, modeling and optimizing processes of engineering relevance such as transport processes of mass, momentum and energy, separation of fluid phases, reproduction of living cells, or energy conversion. The journal is particularly interested in contributions which add to the basic understanding of non-equilibrium phenomena in science and engineering, with systems of interest ranging from the macro- to the nano-level. The Journal of Non-Equilibrium Thermodynamics has recently expanded its scope to place new emphasis on theoretical and experimental investigations of non-equilibrium phenomena in thermophysical, chemical, biochemical and abstract model systems of engineering relevance. We are therefore pleased to invite submissions which present newly observed non-equilibrium phenomena, analytic or fuzzy models for their interpretation, or new methods for their description.
期刊最新文献
Performance analysis of quantum harmonic Otto engine and refrigerator under a trade-off figure of merit Investigation of the operating characteristics of diesel engines with chromium oxide (Cr2O3) nanoparticles dispersed in Mesua ferrea biodiesel: an experimental and predictive approach using ANNs and RSM Analytical solutions for nonequilibrium bioheat transfer in tumor during magnetic nanoparticles hyperthermia Composite liquids under high-power heating: superheat of water in micro-explosion of water-in-fuel droplets Application of a three-laser optical digital interferometry in a thermogravitational analysis for binary and ternary mixtures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1