{"title":"论人工语言中论证结构的产生","authors":"Tom Bosc, Pascal Vincent","doi":"10.1162/tacl_a_00524","DOIUrl":null,"url":null,"abstract":"Abstract Computational approaches to the study of language emergence can help us understand how natural languages are shaped by cognitive and sociocultural factors. Previous work focused on tasks where agents refer to a single entity. In contrast, we study how agents predicate, that is, how they express that some relation holds between several entities. We introduce a setup where agents talk about a variable number of entities that can be partially observed by the listener. In the presence of a least-effort pressure, they tend to discuss only entities that are not observed by the listener. Thus we can obtain artificial phrases that denote a single entity, as well as artificial sentences that denote several entities. In natural languages, if we ignore the verb, phrases are usually concatenated, either in a specific order or by adding case markers to form sentences. Our setup allows us to quantify how much this holds in emergent languages using a metric we call concatenability. We also measure transitivity, which quantifies the importance of word order. We demonstrate the usefulness of this new setup and metrics for studying factors that influence argument structure. We compare agents having access to input representations structured into pre-segmented objects with properties, versus unstructured representations. Our results indicate that the awareness of object structure yields a more natural sentence organization.","PeriodicalId":33559,"journal":{"name":"Transactions of the Association for Computational Linguistics","volume":"10 1","pages":"1375-1391"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Emergence of Argument Structure in Artificial Languages\",\"authors\":\"Tom Bosc, Pascal Vincent\",\"doi\":\"10.1162/tacl_a_00524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Computational approaches to the study of language emergence can help us understand how natural languages are shaped by cognitive and sociocultural factors. Previous work focused on tasks where agents refer to a single entity. In contrast, we study how agents predicate, that is, how they express that some relation holds between several entities. We introduce a setup where agents talk about a variable number of entities that can be partially observed by the listener. In the presence of a least-effort pressure, they tend to discuss only entities that are not observed by the listener. Thus we can obtain artificial phrases that denote a single entity, as well as artificial sentences that denote several entities. In natural languages, if we ignore the verb, phrases are usually concatenated, either in a specific order or by adding case markers to form sentences. Our setup allows us to quantify how much this holds in emergent languages using a metric we call concatenability. We also measure transitivity, which quantifies the importance of word order. We demonstrate the usefulness of this new setup and metrics for studying factors that influence argument structure. We compare agents having access to input representations structured into pre-segmented objects with properties, versus unstructured representations. Our results indicate that the awareness of object structure yields a more natural sentence organization.\",\"PeriodicalId\":33559,\"journal\":{\"name\":\"Transactions of the Association for Computational Linguistics\",\"volume\":\"10 1\",\"pages\":\"1375-1391\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the Association for Computational Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1162/tacl_a_00524\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Association for Computational Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1162/tacl_a_00524","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
The Emergence of Argument Structure in Artificial Languages
Abstract Computational approaches to the study of language emergence can help us understand how natural languages are shaped by cognitive and sociocultural factors. Previous work focused on tasks where agents refer to a single entity. In contrast, we study how agents predicate, that is, how they express that some relation holds between several entities. We introduce a setup where agents talk about a variable number of entities that can be partially observed by the listener. In the presence of a least-effort pressure, they tend to discuss only entities that are not observed by the listener. Thus we can obtain artificial phrases that denote a single entity, as well as artificial sentences that denote several entities. In natural languages, if we ignore the verb, phrases are usually concatenated, either in a specific order or by adding case markers to form sentences. Our setup allows us to quantify how much this holds in emergent languages using a metric we call concatenability. We also measure transitivity, which quantifies the importance of word order. We demonstrate the usefulness of this new setup and metrics for studying factors that influence argument structure. We compare agents having access to input representations structured into pre-segmented objects with properties, versus unstructured representations. Our results indicate that the awareness of object structure yields a more natural sentence organization.
期刊介绍:
The highly regarded quarterly journal Computational Linguistics has a companion journal called Transactions of the Association for Computational Linguistics. This open access journal publishes articles in all areas of natural language processing and is an important resource for academic and industry computational linguists, natural language processing experts, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, as well as linguists and philosophers. The journal disseminates work of vital relevance to these professionals on an annual basis.