A. Acharya, J. Steiner, K. M. Walizada, Salarpouri Ali, Z. Zakir, A. Caiserman, Teiji Watanabe
{"title":"评论文章:亚洲高山的冰雪雪崩——科学的、地方的和土著的知识","authors":"A. Acharya, J. Steiner, K. M. Walizada, Salarpouri Ali, Z. Zakir, A. Caiserman, Teiji Watanabe","doi":"10.5194/nhess-23-2569-2023","DOIUrl":null,"url":null,"abstract":"Abstract. The cryosphere in high mountain Asia (HMA) not only sustains the livelihoods of people residing downstream through its capacity to store water but also holds the potential for hazards. One of these hazards, avalanches, so far remains inadequately studied, as the complex relationship between climate and potential triggers is poorly understood due to lack of long-term observations, inaccessibility, severe weather conditions, and financial and logistical constraints. In this study, the available literature was reviewed covering the period from the late 20th century to June 2022 to identify research and societal gaps and propose future directions of research and mitigation strategies. Beyond scientific literature, technical reports, newspapers, social media and other local sources were consulted to compile a comprehensive, open-access and version-controlled database of avalanche events and their associated impacts. Over 681 avalanches with more than 3131 human fatalities were identified in eight countries of the region. Afghanistan has the highest recorded avalanche fatalities (1057), followed by India (952) and Nepal (508). Additionally, 564 people lost their lives while climbing peaks above 4500 m a.s.l., one-third of which were staff employed as guides or porters. This makes it a less deadly hazard than in the less populated European Alps, for example, but with a considerably larger number of people affected who did not voluntarily expose themselves to avalanche risk. Although fatalities are significant, and local long-term impacts of\navalanches may be considerable, so far, limited holistic adaptation or\nmitigation measures exist in the region. These measures generally rely on\nlocal and indigenous knowledge adapted to modern technologies. Considering\nthe high impact avalanches have in the region, we suggest to further develop adaptation measures including hazard zonation maps based on datasets of historic events and modelling efforts. This should, however, happen acknowledging the already existing knowledge in the region and in close coordination with communities, local government and civil society stakeholders. More research studies should also be attempted to understand the trends and drivers of avalanches in the region.\n","PeriodicalId":18922,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge\",\"authors\":\"A. Acharya, J. Steiner, K. M. Walizada, Salarpouri Ali, Z. Zakir, A. Caiserman, Teiji Watanabe\",\"doi\":\"10.5194/nhess-23-2569-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The cryosphere in high mountain Asia (HMA) not only sustains the livelihoods of people residing downstream through its capacity to store water but also holds the potential for hazards. One of these hazards, avalanches, so far remains inadequately studied, as the complex relationship between climate and potential triggers is poorly understood due to lack of long-term observations, inaccessibility, severe weather conditions, and financial and logistical constraints. In this study, the available literature was reviewed covering the period from the late 20th century to June 2022 to identify research and societal gaps and propose future directions of research and mitigation strategies. Beyond scientific literature, technical reports, newspapers, social media and other local sources were consulted to compile a comprehensive, open-access and version-controlled database of avalanche events and their associated impacts. Over 681 avalanches with more than 3131 human fatalities were identified in eight countries of the region. Afghanistan has the highest recorded avalanche fatalities (1057), followed by India (952) and Nepal (508). Additionally, 564 people lost their lives while climbing peaks above 4500 m a.s.l., one-third of which were staff employed as guides or porters. This makes it a less deadly hazard than in the less populated European Alps, for example, but with a considerably larger number of people affected who did not voluntarily expose themselves to avalanche risk. Although fatalities are significant, and local long-term impacts of\\navalanches may be considerable, so far, limited holistic adaptation or\\nmitigation measures exist in the region. These measures generally rely on\\nlocal and indigenous knowledge adapted to modern technologies. Considering\\nthe high impact avalanches have in the region, we suggest to further develop adaptation measures including hazard zonation maps based on datasets of historic events and modelling efforts. This should, however, happen acknowledging the already existing knowledge in the region and in close coordination with communities, local government and civil society stakeholders. More research studies should also be attempted to understand the trends and drivers of avalanches in the region.\\n\",\"PeriodicalId\":18922,\"journal\":{\"name\":\"Natural Hazards and Earth System Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Hazards and Earth System Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/nhess-23-2569-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/nhess-23-2569-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge
Abstract. The cryosphere in high mountain Asia (HMA) not only sustains the livelihoods of people residing downstream through its capacity to store water but also holds the potential for hazards. One of these hazards, avalanches, so far remains inadequately studied, as the complex relationship between climate and potential triggers is poorly understood due to lack of long-term observations, inaccessibility, severe weather conditions, and financial and logistical constraints. In this study, the available literature was reviewed covering the period from the late 20th century to June 2022 to identify research and societal gaps and propose future directions of research and mitigation strategies. Beyond scientific literature, technical reports, newspapers, social media and other local sources were consulted to compile a comprehensive, open-access and version-controlled database of avalanche events and their associated impacts. Over 681 avalanches with more than 3131 human fatalities were identified in eight countries of the region. Afghanistan has the highest recorded avalanche fatalities (1057), followed by India (952) and Nepal (508). Additionally, 564 people lost their lives while climbing peaks above 4500 m a.s.l., one-third of which were staff employed as guides or porters. This makes it a less deadly hazard than in the less populated European Alps, for example, but with a considerably larger number of people affected who did not voluntarily expose themselves to avalanche risk. Although fatalities are significant, and local long-term impacts of
avalanches may be considerable, so far, limited holistic adaptation or
mitigation measures exist in the region. These measures generally rely on
local and indigenous knowledge adapted to modern technologies. Considering
the high impact avalanches have in the region, we suggest to further develop adaptation measures including hazard zonation maps based on datasets of historic events and modelling efforts. This should, however, happen acknowledging the already existing knowledge in the region and in close coordination with communities, local government and civil society stakeholders. More research studies should also be attempted to understand the trends and drivers of avalanches in the region.
期刊介绍:
Natural Hazards and Earth System Sciences (NHESS) is an interdisciplinary and international journal dedicated to the public discussion and open-access publication of high-quality studies and original research on natural hazards and their consequences. Embracing a holistic Earth system science approach, NHESS serves a wide and diverse community of research scientists, practitioners, and decision makers concerned with detection of natural hazards, monitoring and modelling, vulnerability and risk assessment, and the design and implementation of mitigation and adaptation strategies, including economical, societal, and educational aspects.