{"title":"在直流电场中通过部分聚结操作单个亚飞秒液滴","authors":"M. Shojaeian, S. Hardt","doi":"10.1017/flo.2021.12","DOIUrl":null,"url":null,"abstract":"Graphical Abstract Abstract It is demonstrated how aqueous droplets with volumes down to the sub-femtolitre range can be manipulated, including the withdrawal of minute samples from the droplets. The underlying principle is that of partial coalescence with a liquid reservoir in an applied electric field. Upon partial coalescence, a droplet merges with a reservoir and reappears with a smaller diameter. The droplets studied here perform a reciprocating motion between two reservoirs during which their volume gets reduced. Manipulation of droplets with diameters down to 400 nm is reported. A similarity relation is derived expressing the ratio of droplet diameters before and after partial coalescence as a function of the ratio between electric and interfacial-tension forces. The presented scheme allows the withdrawal of minute samples from small droplets and could prove helpful in various applications where droplets are used as tiny reaction spaces or when the goal is to tailor the size of individual droplets.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manipulation of single sub-femtolitre droplets via partial coalescence in a direct-current electric field\",\"authors\":\"M. Shojaeian, S. Hardt\",\"doi\":\"10.1017/flo.2021.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphical Abstract Abstract It is demonstrated how aqueous droplets with volumes down to the sub-femtolitre range can be manipulated, including the withdrawal of minute samples from the droplets. The underlying principle is that of partial coalescence with a liquid reservoir in an applied electric field. Upon partial coalescence, a droplet merges with a reservoir and reappears with a smaller diameter. The droplets studied here perform a reciprocating motion between two reservoirs during which their volume gets reduced. Manipulation of droplets with diameters down to 400 nm is reported. A similarity relation is derived expressing the ratio of droplet diameters before and after partial coalescence as a function of the ratio between electric and interfacial-tension forces. The presented scheme allows the withdrawal of minute samples from small droplets and could prove helpful in various applications where droplets are used as tiny reaction spaces or when the goal is to tailor the size of individual droplets.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2021.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2021.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Manipulation of single sub-femtolitre droplets via partial coalescence in a direct-current electric field
Graphical Abstract Abstract It is demonstrated how aqueous droplets with volumes down to the sub-femtolitre range can be manipulated, including the withdrawal of minute samples from the droplets. The underlying principle is that of partial coalescence with a liquid reservoir in an applied electric field. Upon partial coalescence, a droplet merges with a reservoir and reappears with a smaller diameter. The droplets studied here perform a reciprocating motion between two reservoirs during which their volume gets reduced. Manipulation of droplets with diameters down to 400 nm is reported. A similarity relation is derived expressing the ratio of droplet diameters before and after partial coalescence as a function of the ratio between electric and interfacial-tension forces. The presented scheme allows the withdrawal of minute samples from small droplets and could prove helpful in various applications where droplets are used as tiny reaction spaces or when the goal is to tailor the size of individual droplets.