密度梯度聚乙烯泡沫:加工条件对机械性能的影响

IF 1.3 4区 医学 Q4 MATERIALS SCIENCE, BIOMATERIALS Cellular Polymers Pub Date : 2019-03-31 DOI:10.1177/0262489319839632
E. Cusson, A. Akbarzadeh, D. Therriault, D. Rodrigue
{"title":"密度梯度聚乙烯泡沫:加工条件对机械性能的影响","authors":"E. Cusson, A. Akbarzadeh, D. Therriault, D. Rodrigue","doi":"10.1177/0262489319839632","DOIUrl":null,"url":null,"abstract":"Uniform foams (UF) and density graded foams (DGF) were produced by using similar or different temperatures on both sides of a compression molding system. The samples were produced using linear low density polyethylene as the matrix and activated azodicarbonamide as the chemical blowing agent. Morphological properties of the produced samples were analyzed via scanning electron microscopy to relate them to their mechanical properties. In particular, flexural and impact properties are reported for samples produced under a range of temperatures (140–200°C) and blowing agent concentration (0.7–1.0 wt%). The experimental results showed that a significant difference can be obtained in flexural modulus (up to 17%) and impact strength (up to 48%) depending on the side the stress is applied on. In all cases, the DGF showed better mechanical responses than UF of similar relative density for the range of conditions tested.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2019-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/0262489319839632","citationCount":"7","resultStr":"{\"title\":\"Density graded polyethylene foams: Effect of processing conditions on mechanical properties\",\"authors\":\"E. Cusson, A. Akbarzadeh, D. Therriault, D. Rodrigue\",\"doi\":\"10.1177/0262489319839632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uniform foams (UF) and density graded foams (DGF) were produced by using similar or different temperatures on both sides of a compression molding system. The samples were produced using linear low density polyethylene as the matrix and activated azodicarbonamide as the chemical blowing agent. Morphological properties of the produced samples were analyzed via scanning electron microscopy to relate them to their mechanical properties. In particular, flexural and impact properties are reported for samples produced under a range of temperatures (140–200°C) and blowing agent concentration (0.7–1.0 wt%). The experimental results showed that a significant difference can be obtained in flexural modulus (up to 17%) and impact strength (up to 48%) depending on the side the stress is applied on. In all cases, the DGF showed better mechanical responses than UF of similar relative density for the range of conditions tested.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/0262489319839632\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489319839632\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319839632","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 7

摘要

均匀泡沫(UF)和密度梯度泡沫(DGF)是通过在压缩成型系统的两侧使用相似或不同的温度生产的。以线性低密度聚乙烯为基体,偶氮二甲酰胺为化学发泡剂制备样品。通过扫描电镜分析了所生产样品的形态特征,并将其与力学性能联系起来。特别是,报告了在温度(140-200°C)和发泡剂浓度(0.7-1.0 wt%)范围内生产的样品的弯曲和冲击性能。实验结果表明,根据施加应力的侧面不同,可以获得显著的弯曲模量(高达17%)和冲击强度(高达48%)差异。在所有情况下,在测试的条件范围内,DGF表现出比相对密度相似的UF更好的力学响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Density graded polyethylene foams: Effect of processing conditions on mechanical properties
Uniform foams (UF) and density graded foams (DGF) were produced by using similar or different temperatures on both sides of a compression molding system. The samples were produced using linear low density polyethylene as the matrix and activated azodicarbonamide as the chemical blowing agent. Morphological properties of the produced samples were analyzed via scanning electron microscopy to relate them to their mechanical properties. In particular, flexural and impact properties are reported for samples produced under a range of temperatures (140–200°C) and blowing agent concentration (0.7–1.0 wt%). The experimental results showed that a significant difference can be obtained in flexural modulus (up to 17%) and impact strength (up to 48%) depending on the side the stress is applied on. In all cases, the DGF showed better mechanical responses than UF of similar relative density for the range of conditions tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Polymers
Cellular Polymers 工程技术-材料科学:生物材料
CiteScore
3.10
自引率
0.00%
发文量
9
审稿时长
3 months
期刊介绍: Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution. Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included. Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.
期刊最新文献
The impact performance of density-graded polyurea elastomeric foams CONFERENCES AND SEMINARS ISOPA’s New Role PATENTS ABSTRACTS Experiments and Modelling of the Expansion of Crosslinked Polyethylene Foams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1