Yu-chen Xi, Qinying Wang, Xiaofang Luo, Xingshou Zhang, Tingyao Liu, Hua Zheng, Lijin Dong, Jie Wang, J. Zhang
{"title":"Ti对流动海水中Monel K500合金应力腐蚀开裂行为及机理的影响","authors":"Yu-chen Xi, Qinying Wang, Xiaofang Luo, Xingshou Zhang, Tingyao Liu, Hua Zheng, Lijin Dong, Jie Wang, J. Zhang","doi":"10.1108/acmm-06-2023-2845","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of Monel K500 alloy.\n\n\nDesign/methodology/approach\nMonel K500 alloy with different Ti contents was designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectroscopy were used to analyze the microstructure of the Monel K500 alloy. In situ electrochemical tests were carried out in static and flowing seawater to study FA-SCC behavior.\n\n\nFindings\nThe number of TiCN particles in the alloy increased as the increase of Ti content. The static corrosion and SCC of Monel K500 alloy are reduced as the content of Ti increases. Generally, the SCC of alloys was caused by the synergistic effect of the anodic dissolution at exposed metal matrix and the pit corrosion of metal matrix adjacent to TiCN particles, which was further accelerated by flowing.\n\n\nOriginality/value\nThe corrosion behavior and mechanism of Monel K500 alloy with different Ti contents in a complex flowing seawater environment are still unclear, which remain systematic study to insure the safe service of the alloy.\n","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ti on stress corrosion cracking behavior and mechanism of Monel K500 alloy in flowing seawater\",\"authors\":\"Yu-chen Xi, Qinying Wang, Xiaofang Luo, Xingshou Zhang, Tingyao Liu, Hua Zheng, Lijin Dong, Jie Wang, J. Zhang\",\"doi\":\"10.1108/acmm-06-2023-2845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of Monel K500 alloy.\\n\\n\\nDesign/methodology/approach\\nMonel K500 alloy with different Ti contents was designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectroscopy were used to analyze the microstructure of the Monel K500 alloy. In situ electrochemical tests were carried out in static and flowing seawater to study FA-SCC behavior.\\n\\n\\nFindings\\nThe number of TiCN particles in the alloy increased as the increase of Ti content. The static corrosion and SCC of Monel K500 alloy are reduced as the content of Ti increases. Generally, the SCC of alloys was caused by the synergistic effect of the anodic dissolution at exposed metal matrix and the pit corrosion of metal matrix adjacent to TiCN particles, which was further accelerated by flowing.\\n\\n\\nOriginality/value\\nThe corrosion behavior and mechanism of Monel K500 alloy with different Ti contents in a complex flowing seawater environment are still unclear, which remain systematic study to insure the safe service of the alloy.\\n\",\"PeriodicalId\":8217,\"journal\":{\"name\":\"Anti-corrosion Methods and Materials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-corrosion Methods and Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1108/acmm-06-2023-2845\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-06-2023-2845","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Effect of Ti on stress corrosion cracking behavior and mechanism of Monel K500 alloy in flowing seawater
Purpose
The purpose of this paper is to investigate the effect Ti on stress corrosion cracking (SCC) and flow accelerated stress corrosion cracking (FA-SCC) behavior and mechanisms of Monel K500 alloy.
Design/methodology/approach
Monel K500 alloy with different Ti contents was designed. A metallurgical microscope (XJP-3C) and scanning electron microscopy (EV0 MA15 Zeiss) with an energy dispersive spectroscopy were used to analyze the microstructure of the Monel K500 alloy. In situ electrochemical tests were carried out in static and flowing seawater to study FA-SCC behavior.
Findings
The number of TiCN particles in the alloy increased as the increase of Ti content. The static corrosion and SCC of Monel K500 alloy are reduced as the content of Ti increases. Generally, the SCC of alloys was caused by the synergistic effect of the anodic dissolution at exposed metal matrix and the pit corrosion of metal matrix adjacent to TiCN particles, which was further accelerated by flowing.
Originality/value
The corrosion behavior and mechanism of Monel K500 alloy with different Ti contents in a complex flowing seawater environment are still unclear, which remain systematic study to insure the safe service of the alloy.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.