{"title":"软粘土地基中钢筋混凝土筏板承台组合桩的岩土力学性能","authors":"D. Ahmed","doi":"10.13168/agg.2022.0016","DOIUrl":null,"url":null,"abstract":"Stone columns consist of granular material compacted in long cylindrical holes. They are used for improving the strength and consolidation characteristics of compressible soils. However, they are still less effective at supporting heavy loads, since they still cannot transfer applied stresses to deeper layers of soil. The main objective of this numerical study was to investigate the geotechnical performance of a combined foundation system composed of stone columns and piles grouped together under a rigid raft foundation in compressible soil. The failure mechanism of this hybrid foundation system was examined, and configurations optimizing the performance of the combined foundation system were explored. An analytical model was developed for predicting the ultimate carrying capacity of the combined system in compressible soils. It was deduced that combining stone columns and piles in one foundation system improved considerably the system’s carrying capacity. Moreover, the uppermost improvement was observed when the piles were installed on the periphery or edge of the raft foundation, while stones columns were placed at the center area of the raft. The failure of the combined foundation system started from the center of the raft and noticeably extended to its edges. Due to the presence of stone columns in the combined foundation system, the piles did not interact. The areas affected or influenced by the soil–pile interaction also did not overlap.","PeriodicalId":50899,"journal":{"name":"Acta Geodynamica et Geomaterialia","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geotechnical performance of combined stone columns and piles capped with reinforced concrete raft foundation in soft clay soil\",\"authors\":\"D. Ahmed\",\"doi\":\"10.13168/agg.2022.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stone columns consist of granular material compacted in long cylindrical holes. They are used for improving the strength and consolidation characteristics of compressible soils. However, they are still less effective at supporting heavy loads, since they still cannot transfer applied stresses to deeper layers of soil. The main objective of this numerical study was to investigate the geotechnical performance of a combined foundation system composed of stone columns and piles grouped together under a rigid raft foundation in compressible soil. The failure mechanism of this hybrid foundation system was examined, and configurations optimizing the performance of the combined foundation system were explored. An analytical model was developed for predicting the ultimate carrying capacity of the combined system in compressible soils. It was deduced that combining stone columns and piles in one foundation system improved considerably the system’s carrying capacity. Moreover, the uppermost improvement was observed when the piles were installed on the periphery or edge of the raft foundation, while stones columns were placed at the center area of the raft. The failure of the combined foundation system started from the center of the raft and noticeably extended to its edges. Due to the presence of stone columns in the combined foundation system, the piles did not interact. The areas affected or influenced by the soil–pile interaction also did not overlap.\",\"PeriodicalId\":50899,\"journal\":{\"name\":\"Acta Geodynamica et Geomaterialia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geodynamica et Geomaterialia\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.13168/agg.2022.0016\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geodynamica et Geomaterialia","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.13168/agg.2022.0016","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geotechnical performance of combined stone columns and piles capped with reinforced concrete raft foundation in soft clay soil
Stone columns consist of granular material compacted in long cylindrical holes. They are used for improving the strength and consolidation characteristics of compressible soils. However, they are still less effective at supporting heavy loads, since they still cannot transfer applied stresses to deeper layers of soil. The main objective of this numerical study was to investigate the geotechnical performance of a combined foundation system composed of stone columns and piles grouped together under a rigid raft foundation in compressible soil. The failure mechanism of this hybrid foundation system was examined, and configurations optimizing the performance of the combined foundation system were explored. An analytical model was developed for predicting the ultimate carrying capacity of the combined system in compressible soils. It was deduced that combining stone columns and piles in one foundation system improved considerably the system’s carrying capacity. Moreover, the uppermost improvement was observed when the piles were installed on the periphery or edge of the raft foundation, while stones columns were placed at the center area of the raft. The failure of the combined foundation system started from the center of the raft and noticeably extended to its edges. Due to the presence of stone columns in the combined foundation system, the piles did not interact. The areas affected or influenced by the soil–pile interaction also did not overlap.
期刊介绍:
Acta geodynamica et geomaterialia (AGG) has been published by the Institute of Rock Structures and Mechanics, Czech Academy of Sciences since 2004, formerly known as Acta Montana published from the beginning of sixties till 2003. Approximately 40 articles per year in four issues are published, covering observations related to central Europe and new theoretical developments and interpretations in these disciplines. It is possible to publish occasionally research articles from other regions of the world, only if they present substantial advance in methodological or theoretical development with worldwide impact. The Board of Editors is international in representation.