孔板流中水力空化的模拟研究

Q3 Economics, Econometrics and Finance Applied Computer Science Pub Date : 2022-09-30 DOI:10.35784/acs-2022-19
K. Pietrykowski, P. Karpiński
{"title":"孔板流中水力空化的模拟研究","authors":"K. Pietrykowski, P. Karpiński","doi":"10.35784/acs-2022-19","DOIUrl":null,"url":null,"abstract":"Hydrodynamic cavitation is a phenomenon that can be used in the water treatment process. For this purpose, venturis or orifices varying in geometry are used. Studying this phenomenon under experimental conditions is challenging due to its high dynamics and difficulties in measuring and observing the phase transition of the liquid. For this reason, the CFD method was used to study the phenomenon of hydrodynamic cavitation occurring in water flow through the orifice and then analyze flow parameters for different boundary conditions. The research was performed for four different orifice geometries and two defined fluid pressure values at the inlet, based on a computational 2D model of the research object created in Ansys Fluent software. As a result of the numerical simulation, the distribution of fluid velocity and pressure and volume fraction of the gas phase were obtained. A qualitative and quantitative analysis of the phenomenon of hydrodynamic cavitation under the considered flow conditions was conducted for the defined orifice geometries. The largest cavitation zone and thus the largest volume fraction of the gas phase was obtained for the orifice diameter of 2 mm with a sharp increase in diameter. However, the geometry with a linear change in diameter provided the largest volume fraction of the gas phase per power unit.","PeriodicalId":36379,"journal":{"name":"Applied Computer Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW\",\"authors\":\"K. Pietrykowski, P. Karpiński\",\"doi\":\"10.35784/acs-2022-19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hydrodynamic cavitation is a phenomenon that can be used in the water treatment process. For this purpose, venturis or orifices varying in geometry are used. Studying this phenomenon under experimental conditions is challenging due to its high dynamics and difficulties in measuring and observing the phase transition of the liquid. For this reason, the CFD method was used to study the phenomenon of hydrodynamic cavitation occurring in water flow through the orifice and then analyze flow parameters for different boundary conditions. The research was performed for four different orifice geometries and two defined fluid pressure values at the inlet, based on a computational 2D model of the research object created in Ansys Fluent software. As a result of the numerical simulation, the distribution of fluid velocity and pressure and volume fraction of the gas phase were obtained. A qualitative and quantitative analysis of the phenomenon of hydrodynamic cavitation under the considered flow conditions was conducted for the defined orifice geometries. The largest cavitation zone and thus the largest volume fraction of the gas phase was obtained for the orifice diameter of 2 mm with a sharp increase in diameter. However, the geometry with a linear change in diameter provided the largest volume fraction of the gas phase per power unit.\",\"PeriodicalId\":36379,\"journal\":{\"name\":\"Applied Computer Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35784/acs-2022-19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35784/acs-2022-19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 1

摘要

水力空化是一种可以应用于水处理过程中的现象。为此,使用几何形状不同的文丘里管或孔口。在实验条件下研究这一现象具有挑战性,因为它具有很高的动力学性,并且难以测量和观察液体的相变。为此,采用CFD方法研究了孔口水流中发生的水力空化现象,并分析了不同边界条件下的流动参数。基于在Ansys Fluent软件中创建的研究对象的计算2D模型,对四种不同的孔口几何形状和两个定义的入口流体压力值进行了研究。数值模拟的结果得到了流体速度、压力和气相体积分数的分布。在所考虑的流动条件下,对所定义的孔口几何形状的流体动力学空化现象进行了定性和定量分析。对于直径急剧增加的2mm的孔直径,获得了最大的空化区,从而获得了气相的最大体积分数。然而,具有直径线性变化的几何形状提供了每功率单元气相的最大体积分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SIMULATION STUDY OF HYDRODYNAMIC CAVITATION IN THE ORIFICE FLOW
Hydrodynamic cavitation is a phenomenon that can be used in the water treatment process. For this purpose, venturis or orifices varying in geometry are used. Studying this phenomenon under experimental conditions is challenging due to its high dynamics and difficulties in measuring and observing the phase transition of the liquid. For this reason, the CFD method was used to study the phenomenon of hydrodynamic cavitation occurring in water flow through the orifice and then analyze flow parameters for different boundary conditions. The research was performed for four different orifice geometries and two defined fluid pressure values at the inlet, based on a computational 2D model of the research object created in Ansys Fluent software. As a result of the numerical simulation, the distribution of fluid velocity and pressure and volume fraction of the gas phase were obtained. A qualitative and quantitative analysis of the phenomenon of hydrodynamic cavitation under the considered flow conditions was conducted for the defined orifice geometries. The largest cavitation zone and thus the largest volume fraction of the gas phase was obtained for the orifice diameter of 2 mm with a sharp increase in diameter. However, the geometry with a linear change in diameter provided the largest volume fraction of the gas phase per power unit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Computer Science
Applied Computer Science Engineering-Industrial and Manufacturing Engineering
CiteScore
1.50
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
COMPARISON AND EVALUATION OF LMS-DERIVED ALGORITHMS APPLIED ON ECG SIGNALS CONTAMINATED WITH MOTION ARTIFACT DURING PHYSICAL ACTIVITIES OPTIMIZING UNMANNED AERIAL VEHICLE BASED FOOD DELIVERY THROUGH VEHICLE ROUTING PROBLEM: A COMPARATIVE ANALYSIS OF THREE DELIVERY SYSTEMS. FILTERING STRATEGIES FOR SMARTPHONE EMITTED DIGITAL SIGNALS ENHANCING MEDICAL DATA SECURITY IN E-HEALTH SYSTEMS USING BIOMETRIC-BASED WATERMARKING ANALYZING THE ROLE OF COMPUTER SCIENCE IN SHAPING MODERN ECONOMIC AND MANAGEMENT PRACTICES. BIBLIOMETRIC ANALYSIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1