Mohammad Homayoonzadeh, Mojtaba Esmaeily, K. Talebi, H. Allahyari, S. Reitz, J. Michaud
{"title":"黄瓜植株接种球孢白僵菌增强了黄瓜对棉蚜的抗性,增加了蚜虫对松壁威的敏感性","authors":"Mohammad Homayoonzadeh, Mojtaba Esmaeily, K. Talebi, H. Allahyari, S. Reitz, J. Michaud","doi":"10.14411/eje.2022.001","DOIUrl":null,"url":null,"abstract":"The entomopathogen Beauveria bassiana (Bals.) Vuill. (Ascomycota: Hypocreales) can colonize plants endophytically and stimulate the production of secondary plant metabolites with anti-herbivore activities. We assayed the topical virulence of B. bassiana to Aphis gossypii Glover (Hemiptera: Aphididae), the effects of cucumber inoculation with this fungus on plant metabolites, and the physiological consequences for aphids that fed on these plants. Assays were conducted with both the commercial formulation of B. bassiana, ‘Naturalis®-L’, at the recommended concentration of 1.5 ml / L (yielding a spore concentration of 2.3 × 107 CFU per ml), and with a similar concentration of the isolated fungal strain. Topical application of 0.03 ml of solution per cm2, or 1 × 103 CFU, caused 100% mortality to A. gossypii adults after seven days, whether Naturalis®-L or the isolate alone was used. The fungus grew endophytically into foliage when sprayed on cucumbers at the 2-leaf stage and concentrations of alkaloids, fl avonoids, phenols, hydrogen peroxide, and total chlorophyll were higher than in control plants 28 days after inoculation. Malondialdehyde content, plant growth, and total yield were unaffected by B. bassiana inoculation. Aphids fed on B. bassiana-inoculated plants for 24 h had reduced activities of detoxifying enzymes (glutathione-S-transferase, carboxylesterase, and acetylcholinesterase) compared to controls. Activities of digestive enzymes, (lipase, α-amylase, α-glucosidase, and aminopeptidase) were reduced in aphids from inoculated plants, which exhibited higher activities of superoxide dismutase, ascorbate peroxidase, and phenoloxidase, but lower catalase activity. Energy reserves (lipids, protein, and glycogen) were lower in aphids from inoculated plants, and they exhibited reduced fecundity, longevity, and reproductive periods, and a 50% reduction in the LC50 of pirimicarb. Thus, in addition to causing direct pathogenicity, inoculation of plants with B. bassiana negatively impacted A. gossypii physiology and reproductive performance and could usefully complement other strategies for managing cotton aphids on greenhouse cucumber. * Corresponding author; e-mail: jpmi@ksu.edu INTRODUCTION The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is a polyphagous cosmopolitan pest of numerous fi eld and greenhouse crops (Ebert & Cartwright, 1997). It has the capacity for rapid population growth, causing direct feeding damage to host plants and transmitting various plant viruses (Deguine et al., 2017). Management of cotton aphids has conventionally relied on the use of synthetic insecticides (Kandil et al., 2017), which has resulted in the aphids evolving resistance to various insecticidal modes of action, and generated a need for alternative management tactics (Wang et al., 2007; Carletto et al., 2010). Eur. J. Entomol. 119: 1–11, 2022 doi: 10.14411/eje.2022.001","PeriodicalId":11940,"journal":{"name":"European Journal of Entomology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Inoculation of cucumber plants with Beauveria bassiana enhances resistance to Aphis gossypii (Hemiptera: Aphididae) and increases aphid susceptibility to pirimicarb\",\"authors\":\"Mohammad Homayoonzadeh, Mojtaba Esmaeily, K. Talebi, H. Allahyari, S. Reitz, J. Michaud\",\"doi\":\"10.14411/eje.2022.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The entomopathogen Beauveria bassiana (Bals.) Vuill. (Ascomycota: Hypocreales) can colonize plants endophytically and stimulate the production of secondary plant metabolites with anti-herbivore activities. We assayed the topical virulence of B. bassiana to Aphis gossypii Glover (Hemiptera: Aphididae), the effects of cucumber inoculation with this fungus on plant metabolites, and the physiological consequences for aphids that fed on these plants. Assays were conducted with both the commercial formulation of B. bassiana, ‘Naturalis®-L’, at the recommended concentration of 1.5 ml / L (yielding a spore concentration of 2.3 × 107 CFU per ml), and with a similar concentration of the isolated fungal strain. Topical application of 0.03 ml of solution per cm2, or 1 × 103 CFU, caused 100% mortality to A. gossypii adults after seven days, whether Naturalis®-L or the isolate alone was used. The fungus grew endophytically into foliage when sprayed on cucumbers at the 2-leaf stage and concentrations of alkaloids, fl avonoids, phenols, hydrogen peroxide, and total chlorophyll were higher than in control plants 28 days after inoculation. Malondialdehyde content, plant growth, and total yield were unaffected by B. bassiana inoculation. Aphids fed on B. bassiana-inoculated plants for 24 h had reduced activities of detoxifying enzymes (glutathione-S-transferase, carboxylesterase, and acetylcholinesterase) compared to controls. Activities of digestive enzymes, (lipase, α-amylase, α-glucosidase, and aminopeptidase) were reduced in aphids from inoculated plants, which exhibited higher activities of superoxide dismutase, ascorbate peroxidase, and phenoloxidase, but lower catalase activity. Energy reserves (lipids, protein, and glycogen) were lower in aphids from inoculated plants, and they exhibited reduced fecundity, longevity, and reproductive periods, and a 50% reduction in the LC50 of pirimicarb. Thus, in addition to causing direct pathogenicity, inoculation of plants with B. bassiana negatively impacted A. gossypii physiology and reproductive performance and could usefully complement other strategies for managing cotton aphids on greenhouse cucumber. * Corresponding author; e-mail: jpmi@ksu.edu INTRODUCTION The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is a polyphagous cosmopolitan pest of numerous fi eld and greenhouse crops (Ebert & Cartwright, 1997). It has the capacity for rapid population growth, causing direct feeding damage to host plants and transmitting various plant viruses (Deguine et al., 2017). Management of cotton aphids has conventionally relied on the use of synthetic insecticides (Kandil et al., 2017), which has resulted in the aphids evolving resistance to various insecticidal modes of action, and generated a need for alternative management tactics (Wang et al., 2007; Carletto et al., 2010). Eur. J. Entomol. 119: 1–11, 2022 doi: 10.14411/eje.2022.001\",\"PeriodicalId\":11940,\"journal\":{\"name\":\"European Journal of Entomology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14411/eje.2022.001\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14411/eje.2022.001","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Inoculation of cucumber plants with Beauveria bassiana enhances resistance to Aphis gossypii (Hemiptera: Aphididae) and increases aphid susceptibility to pirimicarb
The entomopathogen Beauveria bassiana (Bals.) Vuill. (Ascomycota: Hypocreales) can colonize plants endophytically and stimulate the production of secondary plant metabolites with anti-herbivore activities. We assayed the topical virulence of B. bassiana to Aphis gossypii Glover (Hemiptera: Aphididae), the effects of cucumber inoculation with this fungus on plant metabolites, and the physiological consequences for aphids that fed on these plants. Assays were conducted with both the commercial formulation of B. bassiana, ‘Naturalis®-L’, at the recommended concentration of 1.5 ml / L (yielding a spore concentration of 2.3 × 107 CFU per ml), and with a similar concentration of the isolated fungal strain. Topical application of 0.03 ml of solution per cm2, or 1 × 103 CFU, caused 100% mortality to A. gossypii adults after seven days, whether Naturalis®-L or the isolate alone was used. The fungus grew endophytically into foliage when sprayed on cucumbers at the 2-leaf stage and concentrations of alkaloids, fl avonoids, phenols, hydrogen peroxide, and total chlorophyll were higher than in control plants 28 days after inoculation. Malondialdehyde content, plant growth, and total yield were unaffected by B. bassiana inoculation. Aphids fed on B. bassiana-inoculated plants for 24 h had reduced activities of detoxifying enzymes (glutathione-S-transferase, carboxylesterase, and acetylcholinesterase) compared to controls. Activities of digestive enzymes, (lipase, α-amylase, α-glucosidase, and aminopeptidase) were reduced in aphids from inoculated plants, which exhibited higher activities of superoxide dismutase, ascorbate peroxidase, and phenoloxidase, but lower catalase activity. Energy reserves (lipids, protein, and glycogen) were lower in aphids from inoculated plants, and they exhibited reduced fecundity, longevity, and reproductive periods, and a 50% reduction in the LC50 of pirimicarb. Thus, in addition to causing direct pathogenicity, inoculation of plants with B. bassiana negatively impacted A. gossypii physiology and reproductive performance and could usefully complement other strategies for managing cotton aphids on greenhouse cucumber. * Corresponding author; e-mail: jpmi@ksu.edu INTRODUCTION The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is a polyphagous cosmopolitan pest of numerous fi eld and greenhouse crops (Ebert & Cartwright, 1997). It has the capacity for rapid population growth, causing direct feeding damage to host plants and transmitting various plant viruses (Deguine et al., 2017). Management of cotton aphids has conventionally relied on the use of synthetic insecticides (Kandil et al., 2017), which has resulted in the aphids evolving resistance to various insecticidal modes of action, and generated a need for alternative management tactics (Wang et al., 2007; Carletto et al., 2010). Eur. J. Entomol. 119: 1–11, 2022 doi: 10.14411/eje.2022.001
期刊介绍:
EJE publishes original articles, reviews and points of view on all aspects of entomology. There are no restrictions on geographic region or taxon (Myriapoda, Chelicerata and terrestrial Crustacea included). Comprehensive studies and comparative/experimental approaches are preferred and the following types of manuscripts will usually be declined:
- Descriptive alpha-taxonomic studies unless the paper is markedly comprehensive/revisional taxonomically or regionally, and/or significantly improves our knowledge of comparative morphology, relationships or biogeography of the higher taxon concerned;
- Other purely or predominantly descriptive or enumerative papers [such as (ultra)structural and functional details, life tables, host records, distributional records and faunistic surveys, compiled checklists, etc.] unless they are exceptionally comprehensive or concern data or taxa of particular entomological (e.g., phylogenetic) interest;
- Papers evaluating the effect of chemicals (including pesticides, plant extracts, attractants or repellents, etc.), irradiation, pathogens, or dealing with other data of predominantly agro-economic impact without general entomological relevance.