{"title":"用于提高太阳能光伏(PV)性能的被动冷却模块","authors":"H. Abdulmouti","doi":"10.37394/232016.2023.18.2","DOIUrl":null,"url":null,"abstract":"Solar energy is a renewable clean energy. Photovoltaic (PV) cells or solar panels use the sun light as the main source to produce electricity. However, the operating temperature has a significant impact on the PV conversion process and its performance. PV cell technology performance is sensitive to the operating temperature. Increasing cell temperature causes a significant reduction in the output voltage which in turn leads to reducing electrical efficiency. In other words, when the temperature rises, the output current rises exponentially which leads to output voltage to fall. Therefore, PV efficiency decreases. This paper aims to develop a new PV panel passive cooling system that enhances the efficiency of the panel and improves its performance. The design is based on air channels and air chimneys. Overall, cooled solar panels are efficient and cost-effective as their performance is better and their efficiency is higher than the non-cooled solar panels. Our project is designed to serve UAE’s 2021 vision (increased dependence on clean energy and green development), reduce pollution in the environment, and save energy for the next generations. The goal of this research is to lower the temperature of the PV panel., therefore, enhancing the efficiency as well as improving the performance by cooling the PV panel. So, It has the potential to alleviate the problem of overheating solar panels.","PeriodicalId":38993,"journal":{"name":"WSEAS Transactions on Power Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Passive Cooling Module to Improve the Solar Photovoltaic (PV) Performance\",\"authors\":\"H. Abdulmouti\",\"doi\":\"10.37394/232016.2023.18.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solar energy is a renewable clean energy. Photovoltaic (PV) cells or solar panels use the sun light as the main source to produce electricity. However, the operating temperature has a significant impact on the PV conversion process and its performance. PV cell technology performance is sensitive to the operating temperature. Increasing cell temperature causes a significant reduction in the output voltage which in turn leads to reducing electrical efficiency. In other words, when the temperature rises, the output current rises exponentially which leads to output voltage to fall. Therefore, PV efficiency decreases. This paper aims to develop a new PV panel passive cooling system that enhances the efficiency of the panel and improves its performance. The design is based on air channels and air chimneys. Overall, cooled solar panels are efficient and cost-effective as their performance is better and their efficiency is higher than the non-cooled solar panels. Our project is designed to serve UAE’s 2021 vision (increased dependence on clean energy and green development), reduce pollution in the environment, and save energy for the next generations. The goal of this research is to lower the temperature of the PV panel., therefore, enhancing the efficiency as well as improving the performance by cooling the PV panel. So, It has the potential to alleviate the problem of overheating solar panels.\",\"PeriodicalId\":38993,\"journal\":{\"name\":\"WSEAS Transactions on Power Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232016.2023.18.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232016.2023.18.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Passive Cooling Module to Improve the Solar Photovoltaic (PV) Performance
Solar energy is a renewable clean energy. Photovoltaic (PV) cells or solar panels use the sun light as the main source to produce electricity. However, the operating temperature has a significant impact on the PV conversion process and its performance. PV cell technology performance is sensitive to the operating temperature. Increasing cell temperature causes a significant reduction in the output voltage which in turn leads to reducing electrical efficiency. In other words, when the temperature rises, the output current rises exponentially which leads to output voltage to fall. Therefore, PV efficiency decreases. This paper aims to develop a new PV panel passive cooling system that enhances the efficiency of the panel and improves its performance. The design is based on air channels and air chimneys. Overall, cooled solar panels are efficient and cost-effective as their performance is better and their efficiency is higher than the non-cooled solar panels. Our project is designed to serve UAE’s 2021 vision (increased dependence on clean energy and green development), reduce pollution in the environment, and save energy for the next generations. The goal of this research is to lower the temperature of the PV panel., therefore, enhancing the efficiency as well as improving the performance by cooling the PV panel. So, It has the potential to alleviate the problem of overheating solar panels.
期刊介绍:
WSEAS Transactions on Power Systems publishes original research papers relating to electric power and energy. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of these particular areas. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with generation, transmission & distribution planning, alternative energy systems, power market, switching and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.