利用抗逆性野生香蕉改良作物

IF 1.8 4区 农林科学 Q2 AGRICULTURE, MULTIDISCIPLINARY Crop & Pasture Science Pub Date : 2022-12-02 DOI:10.1071/CP22294
Ruby Panwar, B. Chaudhry, Deepak Kumar, Geeta Prakash, Mohd. Kamran Khan, Anamika Pandey, Mehmet Hamurcu, Anjana Rustagi
{"title":"利用抗逆性野生香蕉改良作物","authors":"Ruby Panwar, B. Chaudhry, Deepak Kumar, Geeta Prakash, Mohd. Kamran Khan, Anamika Pandey, Mehmet Hamurcu, Anjana Rustagi","doi":"10.1071/CP22294","DOIUrl":null,"url":null,"abstract":"Climate change impacts crop production through the imposition of different abiotic and biotic stresses, and by altering the prevalence of pests and diseases. The wild relatives of crop plants exhibit enhanced tolerance to environmental stresses due to reduced severity of selection of agriculturally important traits. Wild bananas represent a largely untapped wealth of genetic diversity. Although some wild relatives of the banana crop have been screened for their tolerance to different biotic and abiotic stresses, many remain to be explored. The wild bananas show more hardiness and higher resilience to different stressors in comparison to their cultivated counterparts. They have been harnessed in banana improvement programmes to enhance stress tolerance and productivity. To utilise wild bananas for crop improvement, they need to be readily available to breeders. This warrants devising conservation strategies and the development and maintenance of centres from which different accessions can be procured. In this article, we have discussed some important biotic and abiotic stresses including banana wilt disease, Black Sigatoka disease, viral diseases, salt stress and drought stress where wild bananas are used for imparting tolerance. The conservation of wild bananas, related challenges and contemporary limitations related to their use for crop improvement has also been outlined. Bananas being most important food crop in the world and generally understudied, here, we present a comprehensive review of the use of wild relatives of banana and their related germplasm for the improvement of biotic and abiotic stress tolerance.","PeriodicalId":51237,"journal":{"name":"Crop & Pasture Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Harnessing stress-tolerant wild bananas for crop improvement\",\"authors\":\"Ruby Panwar, B. Chaudhry, Deepak Kumar, Geeta Prakash, Mohd. Kamran Khan, Anamika Pandey, Mehmet Hamurcu, Anjana Rustagi\",\"doi\":\"10.1071/CP22294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change impacts crop production through the imposition of different abiotic and biotic stresses, and by altering the prevalence of pests and diseases. The wild relatives of crop plants exhibit enhanced tolerance to environmental stresses due to reduced severity of selection of agriculturally important traits. Wild bananas represent a largely untapped wealth of genetic diversity. Although some wild relatives of the banana crop have been screened for their tolerance to different biotic and abiotic stresses, many remain to be explored. The wild bananas show more hardiness and higher resilience to different stressors in comparison to their cultivated counterparts. They have been harnessed in banana improvement programmes to enhance stress tolerance and productivity. To utilise wild bananas for crop improvement, they need to be readily available to breeders. This warrants devising conservation strategies and the development and maintenance of centres from which different accessions can be procured. In this article, we have discussed some important biotic and abiotic stresses including banana wilt disease, Black Sigatoka disease, viral diseases, salt stress and drought stress where wild bananas are used for imparting tolerance. The conservation of wild bananas, related challenges and contemporary limitations related to their use for crop improvement has also been outlined. Bananas being most important food crop in the world and generally understudied, here, we present a comprehensive review of the use of wild relatives of banana and their related germplasm for the improvement of biotic and abiotic stress tolerance.\",\"PeriodicalId\":51237,\"journal\":{\"name\":\"Crop & Pasture Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop & Pasture Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1071/CP22294\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop & Pasture Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1071/CP22294","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

气候变化通过施加不同的非生物和生物压力以及改变病虫害的流行率来影响作物生产。由于农业上重要性状的选择程度降低,作物的野生亲缘植物对环境胁迫的耐受性增强。野生香蕉代表了大量尚未开发的遗传多样性。尽管香蕉作物的一些野生亲缘关系已经被筛选出对不同生物和非生物胁迫的耐受性,但仍有许多有待探索。与栽培香蕉相比,野生香蕉表现出更强的韧性和对不同压力源的更高恢复力。它们已被用于香蕉改良计划,以提高抗压能力和生产力。为了利用野生香蕉进行作物改良,饲养者需要随时获得它们。这就需要制定保护战略,并开发和维护可以采购不同材料的中心。在这篇文章中,我们讨论了一些重要的生物和非生物胁迫,包括香蕉枯萎病、黑Sigatoka病、病毒性疾病、盐胁迫和干旱胁迫,其中野生香蕉用于提供耐受性。还概述了野生香蕉的保护、相关挑战以及与用于作物改良有关的当代限制。香蕉是世界上最重要的粮食作物,通常研究不足,在此,我们对利用香蕉的野生亲缘关系及其相关种质来提高生物和非生物胁迫耐受性进行了全面的综述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing stress-tolerant wild bananas for crop improvement
Climate change impacts crop production through the imposition of different abiotic and biotic stresses, and by altering the prevalence of pests and diseases. The wild relatives of crop plants exhibit enhanced tolerance to environmental stresses due to reduced severity of selection of agriculturally important traits. Wild bananas represent a largely untapped wealth of genetic diversity. Although some wild relatives of the banana crop have been screened for their tolerance to different biotic and abiotic stresses, many remain to be explored. The wild bananas show more hardiness and higher resilience to different stressors in comparison to their cultivated counterparts. They have been harnessed in banana improvement programmes to enhance stress tolerance and productivity. To utilise wild bananas for crop improvement, they need to be readily available to breeders. This warrants devising conservation strategies and the development and maintenance of centres from which different accessions can be procured. In this article, we have discussed some important biotic and abiotic stresses including banana wilt disease, Black Sigatoka disease, viral diseases, salt stress and drought stress where wild bananas are used for imparting tolerance. The conservation of wild bananas, related challenges and contemporary limitations related to their use for crop improvement has also been outlined. Bananas being most important food crop in the world and generally understudied, here, we present a comprehensive review of the use of wild relatives of banana and their related germplasm for the improvement of biotic and abiotic stress tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Crop & Pasture Science
Crop & Pasture Science AGRICULTURE, MULTIDISCIPLINARY-
CiteScore
4.20
自引率
15.80%
发文量
111
审稿时长
3 months
期刊介绍: Crop and Pasture Science (formerly known as Australian Journal of Agricultural Research) is an international journal publishing outcomes of strategic research in crop and pasture sciences and the sustainability of farming systems. The primary focus is broad-scale cereals, grain legumes, oilseeds and pastures. Articles are encouraged that advance understanding in plant-based agricultural systems through the use of well-defined and original aims designed to test a hypothesis, innovative and rigorous experimental design, and strong interpretation. The journal embraces experimental approaches from molecular level to whole systems, and the research must present novel findings and progress the science of agriculture. Crop and Pasture Science is read by agricultural scientists and plant biologists, industry, administrators, policy-makers, and others with an interest in the challenges and opportunities facing world agricultural production. Crop and Pasture Science is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
期刊最新文献
<i>Corrigendum to</i>: Forage crops: a repository of functional trait diversity for current and future climate adaptation Crop wild relatives: the road to climate change adaptation Salinity, alkalinity and their combined stress effects on germination and seedling growth attributes in oats (Avena sativa) Tagasaste silvopastures in steep-hill country. 2. Effect of increasing proximity to tagasaste on growth and survival of companion pasture species Inclusion of Egyptian clover improves the value of sorghum-based cropping systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1