A. Khodabakhshi, Ayoub Riahi Farssani, M. Sedehi, M. Sadeghi
{"title":"磁性纳米Fe3O4修饰多壁碳纳米管对水溶液中天然有机物(NOM)的去除","authors":"A. Khodabakhshi, Ayoub Riahi Farssani, M. Sedehi, M. Sadeghi","doi":"10.1155/2023/5936331","DOIUrl":null,"url":null,"abstract":"Backgroundand Aim. Natural organic matter (NOM) has become one of the most serious environmental problems due to its persistence in aqueous solutions and the risk of carcinogenesis. In this study, the removal efficiencies of real and synthetic humic acid (HA) by multi-walled carbon nanotubes (MWCNTs) coated with iron oxide were evaluated. Materials and Methods. The MWCNs were synthesized and coated with iron oxide. In addition, the effects of pH, contact time, mixing speed, and adsorbent dose on the removal efficiency of NOM by MWCNTs-Fe3O4 were studied. Then, the removal efficiency of NOM from real samples was investigated at optimal conditions. The MWCNT-Fe3O4 was characterized by scanning electron microscopy (SEM) test and X-ray diffraction (XRD), respectively. Data analysis was performed using Minitab software based on the Taguchi method. Results. The results showed that MWCNTs were coated with Fe3O4. The SEM test shows particle (MWCNTs-Fe3O4) size in the range of 48–143 nm, and the particles have uniform spherical shapes. Enix software was used to identify the phase in this sample. The conditions including \n \n p\n H\n =\n 3\n \n , mixing speed = 120 rpm, adsorbent dosage = 1.5 g·L−1, and contact time = 90 minutes were selected as optimal for NOM adsorption. The mean removal efficiencies of NOM in synthetic samples at 5, 10, and 20 mg·L−1 concentrations were 86.6%, 84.87%, and 95.41%, respectively. In addition, the mean removal efficiency of NOM in Choghakhor Wetland was 77%. Conclusion. Our findings demonstrated that the MWCNTs-Fe3O4 can be potentially used as an adsorbent for removing natural organic matter (HA) from aqueous solutions.","PeriodicalId":13921,"journal":{"name":"International Journal of Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Removal of Natural Organic Matter (NOM) from Aqueous Solutions by Multi-Walled Carbon Nanotube Modification with Magnetic Fe3O4 Nanoparticles\",\"authors\":\"A. Khodabakhshi, Ayoub Riahi Farssani, M. Sedehi, M. Sadeghi\",\"doi\":\"10.1155/2023/5936331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Backgroundand Aim. Natural organic matter (NOM) has become one of the most serious environmental problems due to its persistence in aqueous solutions and the risk of carcinogenesis. In this study, the removal efficiencies of real and synthetic humic acid (HA) by multi-walled carbon nanotubes (MWCNTs) coated with iron oxide were evaluated. Materials and Methods. The MWCNs were synthesized and coated with iron oxide. In addition, the effects of pH, contact time, mixing speed, and adsorbent dose on the removal efficiency of NOM by MWCNTs-Fe3O4 were studied. Then, the removal efficiency of NOM from real samples was investigated at optimal conditions. The MWCNT-Fe3O4 was characterized by scanning electron microscopy (SEM) test and X-ray diffraction (XRD), respectively. Data analysis was performed using Minitab software based on the Taguchi method. Results. The results showed that MWCNTs were coated with Fe3O4. The SEM test shows particle (MWCNTs-Fe3O4) size in the range of 48–143 nm, and the particles have uniform spherical shapes. Enix software was used to identify the phase in this sample. The conditions including \\n \\n p\\n H\\n =\\n 3\\n \\n , mixing speed = 120 rpm, adsorbent dosage = 1.5 g·L−1, and contact time = 90 minutes were selected as optimal for NOM adsorption. The mean removal efficiencies of NOM in synthetic samples at 5, 10, and 20 mg·L−1 concentrations were 86.6%, 84.87%, and 95.41%, respectively. In addition, the mean removal efficiency of NOM in Choghakhor Wetland was 77%. Conclusion. Our findings demonstrated that the MWCNTs-Fe3O4 can be potentially used as an adsorbent for removing natural organic matter (HA) from aqueous solutions.\",\"PeriodicalId\":13921,\"journal\":{\"name\":\"International Journal of Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/5936331\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/5936331","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Removal of Natural Organic Matter (NOM) from Aqueous Solutions by Multi-Walled Carbon Nanotube Modification with Magnetic Fe3O4 Nanoparticles
Backgroundand Aim. Natural organic matter (NOM) has become one of the most serious environmental problems due to its persistence in aqueous solutions and the risk of carcinogenesis. In this study, the removal efficiencies of real and synthetic humic acid (HA) by multi-walled carbon nanotubes (MWCNTs) coated with iron oxide were evaluated. Materials and Methods. The MWCNs were synthesized and coated with iron oxide. In addition, the effects of pH, contact time, mixing speed, and adsorbent dose on the removal efficiency of NOM by MWCNTs-Fe3O4 were studied. Then, the removal efficiency of NOM from real samples was investigated at optimal conditions. The MWCNT-Fe3O4 was characterized by scanning electron microscopy (SEM) test and X-ray diffraction (XRD), respectively. Data analysis was performed using Minitab software based on the Taguchi method. Results. The results showed that MWCNTs were coated with Fe3O4. The SEM test shows particle (MWCNTs-Fe3O4) size in the range of 48–143 nm, and the particles have uniform spherical shapes. Enix software was used to identify the phase in this sample. The conditions including
p
H
=
3
, mixing speed = 120 rpm, adsorbent dosage = 1.5 g·L−1, and contact time = 90 minutes were selected as optimal for NOM adsorption. The mean removal efficiencies of NOM in synthetic samples at 5, 10, and 20 mg·L−1 concentrations were 86.6%, 84.87%, and 95.41%, respectively. In addition, the mean removal efficiency of NOM in Choghakhor Wetland was 77%. Conclusion. Our findings demonstrated that the MWCNTs-Fe3O4 can be potentially used as an adsorbent for removing natural organic matter (HA) from aqueous solutions.
期刊介绍:
International Journal of Chemical Engineering publishes papers on technologies for the production, processing, transportation, and use of chemicals on a large scale. Studies typically relate to processes within chemical and energy industries, especially for production of food, pharmaceuticals, fuels, and chemical feedstocks. Topics of investigation cover plant design and operation, process design and analysis, control and reaction engineering, as well as hazard mitigation and safety measures.
As well as original research, International Journal of Chemical Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.